

Separated Fringe Packets

Results and Prospects

Brian Mason, Chris Farrington, Theo ten Brummelaar, Nils Turner, et al.

Astrometric Bootstrapping

- When a higher resolution capability is applied to double stars, pairs which were previously at the limit can be routinely observed.
- Historically, this was through telescope aperture but also can be applied to a method of collection.
- In the 19th Century successive Clark refractors, at the time the largest telescopes in the world, were able to resolve closer, known white dwarf companions of Sirius and Procyon.

Georgia State Univer

Speckle Interferometry

- Through both telescope aperture (access to 4-5m telescopes) and the technique to take advantage of it, speckle interferometry accomplished this from the 1970s.
- Clouds of micrometry measures became the "string of pearls" associated with speckle data, most obviously seen in the 28 orbits paper (Hrt1989).
- Separated Fringe Packet (SFP) work is optimized to take these pairs at the limit of speckle capabilities and make a similar gain.

bservatoire

Georgia State University

Generic Figure Description

bservatoire

- Scale is arcseconds
- Lower right gives directions and motion
- The solid curve is the new orbit calculation. If a dashed curve is present it is the current "best" orbit.
- Filled blue circles are speckle interferometry points
- Stars are CHARA Array data
- Each point connected to the predicted orbit position by an "O-C" line
- Solid disk centered on origin is the V band resolution limit of a 4m telescope (30 mas)
- Broken line is the line of intersection of the plane of the orbit with the plane of the sky

χ Draconis

Georgia State University

bservatoire

- CHARA Array data from 0⁰ is from June &
- September 2006 and August & October 2007.
- Three dashed lines from origin indicate predicted position on May 4, 11, and 18, 2009.
- Another scheduled observation June 1 just after periastron (not plotted).

χ Draconis

GeorgiaStateUnivers

bservatoire

- The orbit (Pbx2000b) is quite good:
 - $\mathcal{M}_a = 1.03(0.05) \ \mathcal{M}_{\odot}$ $\mathcal{M}_b = 0.73(0.024) \ \mathcal{M}_{\odot}$
 - $\pi = 122(2.1)$ mas
- At that time, χ Dra had completed 35 revolutions since the first resolution (Lab1974). As of the last Array resolution it is now 45 revolutions.
- The shortcoming of the relative astrometric orbit was the lack of coverage near periastron, predicted for May 31 this year.
- The next orbit will have 33% more orbits, 20% more data, and cover periastron.

Georgia State Univer

SFP3: HD 129132

- ()MDS 14404+2159 MCA. -0.05 -0.00 -0.05 -0,05 0,00 0.05 **bservatoire** LESIA
- CHARA Array data from 90⁰ is from May 2006, July 2007, and May, July and August 2008.
- The fuscia wedge is where the secondary is predicted to be from May 4 to May

8

SFP3: HD 129132

- A spectroscopic triple, the orbit (Scf1991) is good and includes solutions for both the closer (P = 101.6d) as well as this pair.
- This system may be appropriate for an analysis like that for CHARA 96 where the wider pair serves as a calibrator for a baseline solution of the inner pair.
- Considering the wider pair only, at the time of the dashed orbit shown here, HR 5472 had completed ~1.3 revolutions since the first resolution (McA1979b). As of the last Array resolution it is now ~3.4 revolutions.
- Coverage due north now adequate. The object will be due south from late 2012 to early 2013.
- Orbit is obvious need of correction.

SFP3: HD 157482

- CHARA Array data from 180⁰ is from May, June & July 2007 and May, July & August 2008.
- The fuscia wedge is where the secondary is predicted to be from May 4 to May 18.

GeorgiaStateUniver

SFP3: HD 157482

- Like HR 5472, this pair is also a spectroscopic triple with a good recent orbit (Mut2008) which may be appropriate for a combined approach.
- Array data at crucial phases not previously observed can make improvements on the dashed orbit shown here.
- The larger than typical O-C for some Array data is due to inadequate rotation with one baseline used, or difficulties extracting separated fringe packet data at projected separations which were quite close.

Georgia State Univer

SFP2: HD 178911

- CHARA Array data from 0⁰ is from June, July & October 2007 and May & August 2008.
- The dashed line is the predicted position May 18, and the fuscia wedge is 10-12 August.

GeorgiaStateUnivers

bservatoire

SFP2: HD 178911

• While the combined solution orbit (Tok2000) appears superficially adequate the errors are large due to the paucity of resolved data at the time (N=6) :

> $\mathcal{M}_a = 1.07 \ (0.37) \ \mathcal{M}_{\odot}$ $\mathcal{M}_b = 0.84 \ (0.29) \ \mathcal{M}_{\odot}$

• Now, with over three times the data the errors, and masses, are getting much smaller:

 $\mathcal{M}_a = 0.724 \ (0.045) \ \mathcal{M}_{\odot}$ $\mathcal{M}_b = 0.562 \ (0.043) \ \mathcal{M}_{\odot}$

• The pair was last at closest approach during the 2007 winter shutdown. It will next be there in mid 2011.

GeorgiaStateUnivers

SFP3: µ Ari

GeorgiaStateUnivers

Observatoire

- CHARA Array data is from October 2007.
- The dashed wedge is where the pair is predicted to be from October to December 2009.

SFP3: µ Ari

GeorgiaStateUnivers

bservatoire

- Although older, the relative orbit (Msn1997a) adequately covers the data. At that time, the pair had completed ~1.5 revolutions.
- With the Array point, the pair has gone through over 3.6 revolutions, which much more significantly constrains the orbital period.
- The sole Array point was at a crucial separation, which places constraints on the inclination.

Possible Future Target: δ Sco

- Filled stars here represent data taken with the USNO speckle camera.
- The four wedges represent predicted positions from April to June 2009-12.

Georgia State Univer

Possible Future Target: δ Sco

- Due to the very high (0.94) eccentricity and the lack of data points to constrain it near periastron, the orbit (Msn2009) was calculated by fixing eccentricity.
- Exhibiting Be star characteristics near periastron, SFP measures over this time will constrain the orbit while possibly provide other opportunities to examine the Be disk (Sch2009, Tou2009).

Dbservatoire

Т	θ	ρ
2011.25	59	18.7
2011.30	79	13.0
2011.35	128	7.8
2011.40	251	6.9
2011.45	297	15.5
2011.50	310	23.5

Other Possible Targets

V < 7		
$\delta > -20$		
N > ~10		
G > 1		
$10 \text{ mas} < a_{\text{periastron}} < 30 \text{ mas}$		

HD 4775	HR 404	γ^2 And
31 Ari	τ Per	ζ Aur
104 Tau	η Ori	115 Tau
64 Ori	53 Cam	20 Leo
23 Com	HD 125632	HD 128563
ζ Boo	HD 157482	79 Her
100 Her	HR 6814	HR 7048A
HR 7048B	HD 178911	δ Sge
HR 7784	λ Cyg	HD 205314

Properties of "Other" Targets

bservatoire

- Of these, some may be inappropriate due to large Δm in K band, e.g., HR 233, δ Sge.
- These typically fall into two broad categories:
 - Long period, high e systems with a small observation window, and
 - γ^2 And at top left, P ~ 64 y, T₀ ~ 2016
 - Shorter period, lower e systems that happen to spend large fractions of their orbit closer than 30 mas.
 - 79 Her at bottom left, P ~ 10 y, $T_0 \sim 2014$

References

- Hrt1989 = Hartkopf et al. 1989 AJ 98, 1014
- Lab1974 = Labeyrie et al. 1974 ApJ 194, L147
- McA1979b = McAlister 1979 ApJ 230, 497
- Msn1997a = Mason 1997 AJ 114, 808
- Msn2009 = Mason et al. 2009 AJ 137, 3358
- Mut2008 = Muterspaugh et al. 2008 AJ 135, 766
 - Pbx2000b = Pourbaix 2000 A&AS 145, 215
- Scf1991 = Barlow & Scarfe 1991 AJ 102, 2098
- Sch2009 = Schaefer et al. 2009 AAS #213, #409.09
- Tok2000 = Tokovinin et al. 2000 SvAL 26, 116
- Tou2009 = Touhami et al. 2009 AAS #213, #409.18

