

Navy Optical Interferometer: Science Vision

8th Annual CHARA
Science Meeting
29 Feb 2012
Atlanta, GA

Gerard van Belle Lowell Observatory

Summary

- NOI will be the longest-baseline visible-light optical interferometer in the world
- NOI a partnership of Lowell, USNO, NRL
 - Lowell has a 15% guaranteed share
 - Cooperative development of NOI Science Vision
- Recently renamed from NPOI
 - Significance of dropping the 'P'

NOI Parameters

- Current capabilities
- Funded upgrades
 - CPP, VISION
 - 12 months
- Possible further upgrades

Present Array Configuration

- Current
 - 4 Astrometric stations
 - 2 Imaging stations

- Current
 - 4 Astrometric stations
 - 2 Imaging stations
- CPP Upgrade
 - Opens W10, E10, E7

- Current
 - 4 Astrometric stations
 - 2 Imaging stations
- CPP Upgrade
 - Opens W10, E10, E7
- Installation of 1.8m's
 - Maximum baseline: 180m

- Current
 - 4 Astrometric stations
 - 2 Imaging stations
- CPP Upgrade
 - Opens W10, E10, E7
- Installation of 1.8m's
 - Maximum baseline: 18om
- Comparison to CHARA

Current Science Endeavors

- 'Mission-related'
 - USNO-NOI Astrometric Catalog (UNAC)
 - Imaging
- Binary Stars
 - Orbits
- Single Stars
 - Diameters, imaging

UNAC

- Goal ≤ 16 mas accuracy in both RA & Dec
- Institutional need
 - HIPPARCOS positions have degraded over time
- Looking at a early 2012 first release for ~115 stars
 - Forthcoming paper by Benson et al.
 - Significant further expansion in 2012

Binaries

- NOI particularly well-suited for binaries (or other order multiples)
- Orbital separations <1 to 750mas
- Orbital periods well, how patient are you?

- UNITED STATES NAVAL OBSERVATORY
- In "imaging" mode, typically 200 multi-baseline scans/night (record 330)
- Binary detection possible in a little as 1-2 scans
- Only ~2 dozen multiple systems with optical orbits

Stellar Surface Imaging

- 'Nature-level' examples from NOI on Altair, Vega
- Dozens more possible with the current facility
- Wealth of information on stellar structure due to von Zeipel effect
 - Rotation rate, inclination, temperature vs. latitude, energy transport

Development of NOI

- Facility development
 - Additional instruments
 - Larger apertures
- Science users development
 - Increased facility utilization
- Overall facility Science Vision being established to guide the way

VISION Instrument

- Visible Imaging System for Interferometric Observations at NOI
- Full 6-way combination
- Spatial rather than temporal modulation
 - Avoids non-linearities
 - Full use of light
- CCD rather than APD sensing
 - No after-pulsing
- Photometric taps, spatial filtering
 - V² calibration ~1%
- Simple, V-groove design
 - CP precision <1°?

1.8m Telescopes

- Four 1.8-m telescopes originally to be added by NASA to Keck Observatory – now USNO property
- Adds capability to perform extremeprecision relative astrometry & wideangle astrometry on fainter sources

 Sensitivity for high resolution and high dynamic range imaging

1.8m Telescopes

- Support for installation being sought from DoD
- USNO proceeding with site blueprint work at present

Direct Transit Observations

- NOI can observe exoplanet transits
- Planet's shadow is 'perfect' star spot
- λ-specific
 observations →
 atmospheric
 composition

Additional Instrumentation

- 1.4-m carbon fiber telescopes under development
- Instrument proposal possibilities
 - JHKL-band combiner
 - PMS disk imaging young disks, transition disks
 - Debris disks / hot dust
 - PMS binaries
 - Asteroid sizes/shapes, binarity
 - High-precision closure phase combiner
 - Exoplanet imaging, transit event imaging
 - K-band FTK / V-band imaging
 - Low-mass stellar imaging/diameters
 - Others high spectral resolution, etc.

Science Users Development

- Increased Lowell involvement
 - Use of 15% guaranteed time share
 - NOI is a marquee facility for which Lowell has privileged access
- Unique opportunity for Lowell Science Partners
 - Open access (eg. NOAO-CHARA) being considered but not currently available
 - However, LSP have NOI access via Lowell

DARPA Galileo BAA

- Specifications
 - Image objects geosync orbits
 - m_V=11
 - Notional 'scene' of 10m x 10m, 10cm resolution
 - Use of movable telescope(s), fibers is required
- Broken up in to 3 Tasks, 2 Phases
 - Tasks: Telescope, Fiber backbone, System integration
 - Phase 1: SRR, Phase 2: PDR/CDR/prototype
- Overall budget of \$14M
 - \$500k per task in Phase 1, balance to Phase 2
- Schedule: 3^{mo} for Phase 1, 18^{mo} for Phase 2

Strawman Design

Completely subject to revision due to better ideas, inconvenient truths, necessary descoping, other aspects of reality

- 4 telescope demonstration
 - 3×1.8 m fixed apertures
 - Movable 1.4m CFRP telescope
 - Position sensing using industry 'Coordinates Measuring Machine' (CMM) devices
 - Robo-AO Rayleigh LGS on each telescope
- Beam transport using single-mode polarization-maintaining photonic crystal fibers
 - 'Magic' fibers are 'endlessly single mode' from 400 to 2000+ nm
 - Pathlength monitoring using HeNe?
- Freespace delay using existing FDLs
 - Include fiber LDL?
- Back end
 - Pairwise K-band fringe tracking
 - Option: sub-e⁻ read noise SELEX / Teledyne eAPD detectors
 - RIJH-band imaging

Proposal Development

- System Integration is the true challenge
 - And maybe schedule
 - Motivation for a 4-telescope demonstration
- Risk reduction part of our Phase 1?
 - Low TRL items: fiber transport, SELEX detector, CFRP telescope
- Design study trades
 - Wavelength spectrum allowances
 - Sensitivity budget
 - Still significant dispersion questions
- Multi-aperture system is the essential design goal and the essential need
- Proposal workshop at Lowell?
 - Attendance: 'core' partners, plus possible interested subcontractors
 - And, if awarded Phase 1 dollars, design workshop(s)?

