

A comparison of CLASSIC/CLIMB pipeline reductions of young stellar objects.

Brian Kloppenborg

Fabien Baron, John Monnier, Stefan Kraus, Rafael Millan-Gabet Alicia Aarnio

Want to test:

- Evaluate usability and available diagnostics
- Intra-night consistency
 - Use observations on the same baseline throughout the night
- Night-to-night consistency
 - Use observations on the same baseline between nights.
- Compare pipeline nominal value and uncertainty estimates
- Verify reliability of reductions

TTB CLASSIC pipeline

JDM CLASSIC pipeline

MWC 361 (K = 4.6)

MWC 361 (K = 4.6) - zoomed

MWC 275 (K = 4.8)

RY Tau (K = 5.4)

RY Tau (K = 5.4) CLASSIC + CLIMB

V1295 Aql (K=5.9)

HD 142666 (K=6.1)

HD 142666 (K=6.1) CLASSIC+CLIMB

Pipeline error predictions

Differences between pipelines

Conclusions

- Both pipelines produce similar nominal values for low flux objects.
- TTB pipeline:
 - Uncertainties extremely scattered, often conservative
 - Minimum uncertainties seem too good
 - Needs a few improvements, easily scripted, easy to use
 - Pipelines working for both CLASSIC and CLIMB
- JDM pipeline:
 - Uncertainties similar throughout a night
 - Minimum uncertainties clearly enforced
 - Many more diagnostic screens, easy to use
 - No CLIMB pipeline (yet)
- Comparison suggests minimum $\sigma V^2 \sim 0.01 0.02$ for $V^2 < 0.3$

