

Rachael Roettenbacher

Stockholm University

RS Canum Venaticorum Stars

- Binary with giant primary and main sequence secondary
- Many with short orbital periods and tidallylocked
- Show photometric and Ca II H&K variability
- Spotted

Sunspot Structure

- Photosphere
 - *T*_{eff} = 5777 K
 - *B* ~ few G
- Penumbra
 - *T*_{eff} ~ 5600 K
 - *B* ~ 100 G
- Umbra
 - *T*_{eff} ~ 4800 K
 - *B* ~ few kG

APOD/Shivak & Friedman

Sunspot Magnetism

- Magnetic fields wrap around the surface due to differential rotation
- Starspots form where *B*-field is perpendicular to the surface

RS CVn Imaging Campaign

- Simultaneous observing runs (photometry, spectroscopy, interferometry)
- Image data (light-curve inversion, Doppler, aperture synthesis imaging)
- Compare results

Light-curve Inversion Imaging

- Spots rotate in and out of view causing variability
- Advantages
 - Applied to any star
 - Constrains spot longitude
 - Requires little data
- Disadvantages

GeorgiaStateUnivers

- Poor latitude constraints
- No inclination constraints

bservatoire

 Only detects rotational modulation

Doppler Imaging

- Spots rotate in and out of view seen as distortions in absorption lines
- Advantages
 - Constrains spot latitude
 - Constrains spot longitude
- Disadvantages

GeorgiaStateUnivers

- Requires high signal-to-noise, high-resolution spectra
- Requires good phase coverage
- Requires rapidly-rotating stars

bservatoire

THE UNIVERSITY OF SYDNEY

Interferometric Imaging

- Spots imaged directly as they appear on the surface
- Advantages
 - Determines orientation on sky, inclination
 - Accurately maps spot location
 - No fundamental limit to resolution
- Disadvantages

GeorgiaStateUniversit

- Requires large stars
- Requires bright stars
- Limited baseline lengths

Observatoire

SURFING: SURFace imagING

- Each pixel on the surface of a rotating star can be changed to fit multiepoch data
- More robust than imaging single snapshots
- Analogous to technique used in Doppler imaging

Observatoire

THE UNIVERSITY OF SYDNEY

Monnier in prep.

The CHARA Array Science Meeting 2018

MIRC Orbits of RS CVns

H-band flux ratio 370:1

H-band flux ratio 270:1

2011 Imaging

2011 Imaging

Georgia State University

ETER

P = 19.6 days

Roettenbacher et al. 2017

2011 Imaging

Georgia<u>State</u>University

ETER

P = 19.6 days

Roettenbacher et al. 2017

2011 σ Gem Light Curve Comparison

2012 Imaging

2012 Imaging

Georgia State University

ETER

P = 19.6 days

Roettenbacher et al. 2017

2012 Imaging

GeorgiaStateUniversity

P = 19.6 days

Roettenbacher et al. 2017

ETER

2012σ Gem Light Curve Comparison

σ Gem in *H*-band

THE UNIVERSITY OF SYDNEY

Roettenbacher et al. 2017

2011 ζ And Imaging

Observatoire - LESIA

GeorgiaStateUniversity

THE UNIVERSITY OF SYDNEY

Observatoire

Australian National University

P = 17.7 days

EXETER

Roettenbacher et al. 2016

京都大学 KYOTO UNIVERSITY

2013 ζ And Imaging

Observatoire - LESIA

GeorgiaStateUniversity

THE UNIVERSITY OF SYDNEY

Observatoire

Australian National University

P = 17.7 days

EXETER

Roettenbacher et al. 2016

京都大学 KYOTO UNIVERSITY

2013 ζ And in *H*-band

Roettenbacher et al. 2016

XETER

by Zsolt Kővári

EXETER

ζ Andromedae

To Do

• Finalize Doppler image

National University

Doppler image provided by Zsolt Kővári

京都大学

KYOTO UNIVERSITY

EXETER

ζ Andromedae

To Do

- Finalize Doppler image
- Surfaces converted to light curves

GeorgiaStateUniversit

National University

Doppler image provided by Zsolt Kővári

京都大学

KYOTO UNIVERSITY

EXETER

Observatoire LESIA

ζ Andromedae

To Do

- Finalize Doppler image
- Surfaces converted to light curves
- NEW! MIRC surface converted to spectra and compared to observed

Doppler image provided by Zsolt Kővári

EXETER

Next: UX Ari

- Simultaneous MIRCX, VLT UVES spectra, SMARTS 1.3m photometry
- Waiting on the MIRCX pipeline!

GeorgiaStateUniversit

bservatoire LESIA

