

Detecting Giant Planets in Hot Binary Systems with CHARA / VLTI

Tyler Gardner John Monnier

University of Michigan, Ann Arbor Astronomy Department

Talk Outline

THE UNIVERSITY OF

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- MIRC Pilot Study: del del + detection limits
- ARMADA survey CHARA and VLTI
- Initial results

Talk Outline

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- MIRC Pilot Study: del del + detection limits
- ARMADA survey CHARA and VLTI
- Initial results

Planets around A-Type Stars

HR 8799, Keck

Beta Pic, GPI

Several known transiting planets around A-stars:

KELT-20, WASP-33, Kepler-13 A, HAT-P-57, KELT-17, KELT-9, Kelt-

21

(Lund et al, 2017 ; Johnson et al, 2018)

ARMADA at CHARA/VLT

Planets around A-Type Stars

Difficulties

- RV nearly impossible (weak/broad spectral lines)
- Most transit surveys focus on solar-type

Planet occurrence rate as function of stellar mass?

- RV surveys of **retired A-stars** used to infer main-sequence planet occurrence rate (Johnson et al 2010, Bowler et al 2010)

Issues: 1) Progenitors truly A-type stars? (Lloyd et al, 2010 ; Ghezzi et al, 2018) 2) Stellar Variability masking planet signals (Hatzes et al, 2018)

Talk Outline

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- MIRC Pilot Study: del del + detection limits
- ARMADA survey CHARA and VLTI
- Initial results

Confirming Top-Heavy Planet Distribution

- Astrometry method could probe this regime
 - Need *micro-arcsecond* precision to detect "wobble"

bservatoire

-LESIA

"wobble" = $\frac{separation}{1 + M_{star} / M_{planet}}$

THE UNIVERSITY OF SYDNEY

Observatoire

GeorgiaStateUniversi

Long-Baseline Interferometry: Differential Astrometry

Michigan Infra-Red Combiner (MIRC) at the CHARA Array

bservatoire

-LESIA

- 6 telescopes baselines up to 330 meters
- **GRAVITY** at VLTI
 - Combines 4 telescopes, K-band ۲

GeorgiaStateUniversity

Astrometric Planet Detection via Interferometry

Binary Orbit:

Astrometric Planet Detection via Interferometry

Binary Orbit:

Astrometric Planet Detection via Interferometry

Binary Orbit:

With "S-type" companion:

Australiar National University

Observatoire

bservatoire

LESIA

GeorgiaStateUniversity

ETER

KYOTO UNIVERSITY

Talk Outline

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- **MIRC Pilot Study: del del + detection limits**
- ARMADA survey CHARA and VLTI
- Initial results

MIRC at CHARA Array: Delta Delphini

Close binary (<10 milli-arcsec) late A-type components 40-day period

Recent paper:

Gardner et al, Precision orbit of δ Delphini and Prospects for Astrometric Detection of Exoplanets, 2018, ApJ **855** 1

bservatoire - LESIA

Observatoire

- Can detect most planets > 2 M_j on orbits > 0.7 AU

KYOTO UNIVERSITY

National Iniversit

ARMADA at CHARA/VLTI

GeorgiaStateUniversity

ETER

Talk Outline

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- MIRC Pilot Study: del del + detection limits
- ARMADA survey CHARA and VLTI
- Initial results

NPOIL CO

- Northern Sky: CHARA
- Monitor sample of A/B type binaries
 - Low projected sep (<0.2 arcsec)
 - Hmag<5.5
- Finished 1st year of observing

ARMADA Survey at VLTI

- Southern Sky: GRAVITY at VLTI
 - Can probe wider binary targets
- Pilot study in 2018
 - Achieved desired precision
- 2-year Large Program Accepted
 - 30 targets

Talk Outline

- Why search for planets around "hot" stars?
- Using astrometry method to discover planets
- MIRC Pilot Study: del del + detection limits
- ARMADA survey CHARA and VLTI
- Initial results

The CHARA/NPOI Science Meeting 2019

Getting to 10 micro-as \rightarrow Systematics

- 10-microarcsecond precision desired
 - 1e-4 for 100 mas binary
 - 300 m long baseline --> 3 cm (easy)
 - 1e-4 wavelength knowledge harder

- ETALONS allow us to calibrate our wavelength solution between nights at CHARA
 - Custom made by John Monnier & student Keith Johnson

Etalon Calibration

- Simulates binaries of known separation
- Wavelength-dependent visibilities and phases act as a wavelength reference

[S2 S1 E2]

['W2' 'S2' 'E2']

Etalon Calibration

- Simulates binaries of known separation
- Wavelength-dependent visibilities and phases act as a wavelength reference

['E1' 'S1' 'E2']

[E1 W1 S2]

 \leftarrow On-Sky Data (red dashed line is model)

Etalon Results

- Model includes dispersion, flux ratio, 6 etalon thicknesses
- Fit to many nights ightarrow Pick reference etalon thicknesses ightarrow Measure % off reference
- This "etalon factor" is then applied to our data for that night

First Results from Some Binaries

HIP 26536 - All Data

HIP 26536

E

Summary

The CHARA/NPOI Science Meeting 2019

- Goal: Improve exoplanet census with longbaseline interferometry by targeting A/B-type binary systems
 - Began survey with MIRC-X at CHARA
 - Survey with GRAVITY at VLTI starting soon

From pilot study, we expect to recover most exoplanets >2 M_1 on ~AU orbits

Exoplanets with Gaia

For new detections (Sahlmann, 2015): $S/N = a_1 \frac{\sqrt{N_{Gaia}}}{\sigma} > 20$

THE UNIVERSITY OF SYDNEY

National University

Observatoire

$$\sigma_{\Lambda}$$
 = 50 µ-as, N_{Gaia} = 70, a₁ = "wobble"

<u>Detecta</u>	oility of planet at 3 AU	· . ·
	<u>1 M_☉</u>	$2 M_{\odot}$
$1 M_{J}$:	out to 20 pc	
	(~200 stars)	
10 14 .		

bservatoire - LESIA

(~25,000 stars)

GeorgiaStateUniversi

Exoplanets with Gaia

For new detections (Sahlmann, 2015): $S/N = a_1 \frac{\sqrt{N_{Gaia}}}{\sigma} > 20$

 σ_{Λ} = 50 µ-as, N_{Gaia} = 70, a₁ = "wobble"

<u>Detectab</u>	ility of planet at	<u>3 AU:</u>
	<u>1 M_☉</u>	<u>2 M</u> _☉
1 M _J :	out to 20 pc	out to 10 pc
	(~200 stars)	(4 stars)
10 M _J :	out to 200 pc	out to 100 pc
	(~25,000 stars)	(600 stars)

servatoire - LESIA

Complication: Planets in Close Binary Systems?

- Suppression for *binary separation* < 50 AU (Kraus et al, 2016)
 - BUT Matson et al, 2018 find *no suppression* in Kepler planets
- Planets still found in these environments
 - 10 planets with *binary separations* <100 AU
 - 5 planets around <20 AU binary

Georgia State Unive

- (Thebault & Haghighipour, 2015)
- PHASES astrometry project (Mutterspaugh et al 2010)
 - 6 substellar companions out of 50 binary targets

Kepler-444:

5 (non-giant) planets around component A

Other Systematics – Pupil control

Potential problem for 1e-4 precision

servatoire

- Pupil tracking
 - CHARA \rightarrow labAO (AO soon)
- NAOMI (AO system) just commissioned on VLTI

GeorgiaStateUniver

Observatoire

THE UNIVERSITY OF SYDNEY

Another MIRC test case: 59 Cyg

- Be star with ~170 mas companion
- Discovered a new 900-day companion
- Detected "wobble" from known 28-day companion (*Peters et al, 2013*)

The CHARA/NPOI Science Meeting 2019

-10

-15

-0.2 -0.3

bservatoire - LESIA

-0.1

-20

Disk Model

Main Goal of Binary Survey: Distinguish between Planet Distributions

KYOTO UNIVERSITY

Main Goal of Binary Survey: Distinguish between Planet Distributions

KYOTO UNIVERSIT

