

"ALOHA CHARA @L band ; Progress in 2018 and perspectives"

F.REYNAUD

L. LEHMANN, L. GROSSARD, L.DELAGE

Observatoire

GeorgiaStateUnive

@ 1.55 μm / H band : ALOHA development in lab >>> On the sky test @ CHARA

First fringes ; new functionalities ; launching interface = JOUFLU

@ 3.5 μm / L band : ALOHA development in lab >>> On the sky test @ CHARA

Observatoire

GeorgiaStateUniversity

ETER

ALOHA strategy

23

The CHARA/NPOI Science Meeting 2019

Observatoire

Observatoire - LESIA

GeorgiaStateUniversity

ETER

E

KYOTO UNIVERSITY

Telescope stage

Status :

*Tip tilt + AO + raster >> existing on CHARA

- * Injection / conversion stage under development @XLIM
- * In 2017 : test of the thermal disturbance of the PPLN thermal regulation > OK
- In 2018 : test of the launching assembly @ 1.5 µm H band On the sky (see below).

Beam picked before M5

servatoire

-LESIA

GeorgiaStateUniversit

Observatoire

THE UNIVERSITY OF

Telescope stage

Status :

* Test of the dichroic without coating on the CHARA carousel 30% transmission in L band (@ 3.5μ m) ... no so bad ... no so good but sufficient for first tests

To be achieved :

- * Finalization of the conversion stage (dichroic and pump injection ; optimization of the NA ...)
- * Compatibility with a vertical table
- * Fibers routes through the telescope mount !

vatoire

Status :

In 2017

First test and stabilization with the OHANA fibers @ $1.55 \,\mu$ m achieved last year is now accepted for publication in **Experimental Astronomy**

Fiber link

« Environmental characterisation and stabilisation of a 2×200-meter outdoor fibre interferometer at the CHARA Array » ; Lucien Lehmann · Laurent Delage ·Ludovic Grossard · Francois Reynaud · Steve Golden · Craig Woods · Larry Webster · Judit Sturmann · Theo ten Brummelaar·

GeorgiaStateUniversit

Fiber link

Current steps and to be achieved :

- * S1 S2 selected (telescope access ; baseline >> delay line)
- * The convenient route is identified (! Telescope mount route!!!)
- * Permanent implementation of the fiber routes. To be discussed and done with the CHARA team
- * Packaging of the 250 m @ 810 nm (lab to S2_S1) long fibers (XLIM lab and outside the lab...)
- * Use the duct to lay the 810 nm (ALOHA) and 1.5 μm (OHANA) fibers ?
- * Fibers for pump sharing between S1 and S2

GeorgiaStateUniver

Status :

* Use of the CHARA delay lines

Delay lines

- * Collimation and injection prototype tested in 2018
- * Beam diameter 1-2 " (Lf >> 100m !!!)

GeorgiaStateUniversit

- * Collimator and injection stage final version
- * Mechanical mounting on the Delay Line at CHARA
- * Test at CHARA (Stability of the coupling with an internal source and on the sky)

To be achieved :

- * Duplication in progress
- * Integration of the OPD servo loop using the pump light

bservatoire

Delay lines

*Tests on the transmission in H band all along the stroke $55\% \le T \le 75\%$ Internal source

Beam selection table

Beam Combiner

ETER

Status

- * All guided combiner with fibers waveguides and coupler
- * OPD modulation by PZT stroke = 750 μ m
- * Fiber delay line stroke = 5 mm
- * Filtering stage
- * Si Photon counting detector + data processing

To be achieved

* Optical tests and calibration

KYOTO UNIVERSIT

-LESIA

2) On the sky tests

At CHARA (H band)

- *Use of the OHANA H fibers to link S1 to the lab
- *Implementation of a full ALOHA arm excepted the conversion
- i.e. injection stage > 250 m H fiber > CHARA delay line > H fiber
- * Simple uncooled InGaAs photodiode

GeorgiaStateUniversi

- * No modulation ; integration time in the range 15 to 200 s
- * Global throughput 50% (with an internal laser)
- * On sky tests with a ro = 2 cm!!

Star	H_{mag}	Integra	tion time (s)	Tension (mV)	Power (fW)	SNR
	0	Star	Dark			
HD217906	-1.98	185	36	2064.90	4129	42.7
HD200905	0.13	15.1	2.5	200.11	400	20.0
HD205435	2.06	27.9	5.1	37.96	75.9	27.3
HD190603	4.41	29.2	32.3	6.71	13.4	26.1
HD191610	5.08	44.1	25.9	2.62	5.25	16.0
HD189687	5.54	59.5	28.2	2.48	4.96	16.4
HD208682	6.05	113.5	74.3	1.86	3.72	19.9

servatoire

THE UNIVERSITY OF

Observatoire

Test on C2PU epsilon telescope in june 2018 in L band

- * Throughput telescope to ALOHA around 1 %
- * Tiptilt from OCA
- * Fluoride optical fiber >> possible calibration of the conversion stage
- * Modulation by a chopper
- * Data processing
- * Sky and chopper back ground correction

ETER

Figure 3. Data Processing.

2005 000

600 400 200

200

100

180

200

										100	120	140 16	50 180 2	200
	Source Observation L mag		L mag	mag Flux ^b		Integration time (s)		N_{\star}	SNR	4 000			Alf Boo	4
		hour		$(fW \cdot nm^{-1})$	(Jy)	on target	off target	(ph/s)	(σ)	s 3 000				3
	Alf Bou	22:51	-3.12	5100	955	60	0	4762	232	- 5 2 000				$+^{2}_{1}$
	Gam Dra	23:37	-1.44	1080	204	120	0	787	61.2	0		حالمحمح		+0
	Alf Lyr	03:25	0	288	54	180	180	250	15.4					-
	Eta Cyg	04:00	1.53	70.4	13.4	720	900	46	5.99	600			Gam Dra	
•	Dlt Cyg	04:39	2.77	22.5	4.2	720	1080	20	2.73	S ⁴⁰⁰				+ 40
	Sky BG	05:07				0	180	-96 ^a	8.31		m	Jun	m	
	Internal	05:41	—	18.2	—	180	0	1114	97.9					-
	^a Typical	value for N_{BG} ·	+ N _{tel} – 1	N _{chp}					200			— Alf Lyr		
	^b Spectral flux density on a single polarisation								s/q					
Internal source > calibration									2	P 100				
Limiting Sky + tel + Chopper background								•	0	www.	1 mm	mm m	^ 0	
Lmag = 2.8									40			Eta Cyg	40	
Despite the 1% telescope to ALOHA transmission											~ 1 \ \			+ 20
										• -	\mathcal{M}	MWW	MMM MM	0
"Toward a mid-infrared L band up-conversion interferometer:										20			Dlt Cyg	20
Firs	First on-sky sensitivity test on a single arm",											. /	Mr M	A 10

Accepted for publication in Monthly Notices of the Royal Astronomical Society

120

140

Frequency (Hz)

100

160

3) In lab Tests

CaF₂ lens

GeorgiaStateUniversit

verre fluoré

SM fiber

thermal

source

ETER

Test at XLIM in L band

- * Black body source
- Fluoride optical fiber>> unresolved object

Observatoire

THE UNIVERSITY OF

National Universit

• Adjustable spectral resolution.

Figure 1. Description of the experimental setup. OAP: Off-Axis Parabolic mirror ; BS: beam slitter 50/50 ; M: gold coated mirror ; D: dichroic mirror (AR@3.5µm HR@1064nm) ; L1: Off-Axis Parabolic mirror ; L2-L3: microscope objective. The monochromator can be removed by connected together its input and output fibers.

bservatoire

-LESIA

ETER

Test at XLIM in L band

* Black body source at 40° C full spectrum (acq 100 ms x 2400 frames C= 80 % SNR 7) eq Lmag around 4 -5 for a 1m telescope (TBC)

 $\Delta\lambda$ around 2nm @817 nm >> $\Delta\lambda$ around 40nm @ 3.5 μ m

servatoire - LESIA

THE UNIVERSITY OF

Thank you

