# The CHARA Array Imaging of Evolved Stars

Narsireddy Anugu

**CHARA Collaboration** 

2024 Mar 12

1



### What stars I study?



IMAGES NOT TO SCALE

#### **Planetary Nebula**

White Dwarf

Supernova

**Neutron Star** 

Black Hole credit:wikipedia



# 1. Red supergaints or hypergaints

- Active research in studying mass-loss mechanisms
- What happens between red supergiant to supernovae phase?
- How they impact the fate of the star become black hole or neutron star?



# Cool hypergaint: RW Cep

#### **Target of opportunity (TOO)**



### **RW Cep light curve from AAVSO data**

JD-2433283 (days)

# **Cool hypergaint: RW Cep**



Mag V

5

| าร |   |  |
|----|---|--|
| 10 | 1 |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    | 4 |  |
|    |   |  |
|    |   |  |
| -  | 4 |  |
|    |   |  |
|    |   |  |
| _  |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    | 1 |  |
|    |   |  |
|    |   |  |
|    | f |  |

#### T3PHI (deg)



### **RW Cep observations**

# Images of RW Cep 2022 Dec

#### 1.0 3 H-band 2 -- 0.8 - 0.6 A DEC (mas) 0 0.4 -1 -0.2 -2 --3 0.0 -2 -3 3 2 0 -1 $\Delta$ RA (mas) 1.0 3 2 -- 0.8 0.6 A DEC (mas) 0 -0.4 -1 - 0.2 -2 --3 -0.0 0 ∆ RA (mas) 3 2 1 -1 -2 -3

#### SQUEEZEE/ **OITOOLS**

#### SURFING



Anugu et al. 2023



# **CHARA images of RW Cep**



### 2022 December faintest

#### brighter

### 2023 July brightening



# CHARA images of RW Cep





#### brighter

#### 2023 July brightening



# RW Cep: OITOOLS Do we see time varying dust evolution?



10



# **RW Cep: ROTIR**



# **RW Cep: SURFING**







#### 2022 Dec

#### 2023 Jul



# PMOIRED model fitting

#### 2023 Sep

#### 2023 Oct





### (U, V)-coverage

14

![](_page_13_Figure_4.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

 Vast gas cloud ejection Cloud cools and forms dust dust blocks starlight

• Similar to Betelgeuse

Illustration credit: NASA, ESA, and E. Wheatley (STScI) Montarg`es et al. 2021, Dupree et al. 2022

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

# **Presented at AAS meeting**

![](_page_16_Picture_2.jpeg)

#### Covered by more than 20 websites

STELLAR SCIENCE

#### **ASTRONOMERS WATCH ANOTHER GIANT STAR DIM**

BY: GOVERT SCHILLING | JANUARY 9, 2024 | 🗔 3

Betelgeuse isn't the only giant star to undergo a "Great Dimming."

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

# With that motivation studied another target: rho Cas

# rho Cas light curve from AAVSO

Yellow hypergaint, known for episodic outbursts

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_4.jpeg)

### rho Cas observations

![](_page_19_Figure_1.jpeg)

|      |      |      |      | _    |
|------|------|------|------|------|
| 2.20 | 2.25 | 2.30 | 2.35 | 2.40 |
|      |      |      |      |      |

### rho observations

![](_page_20_Figure_1.jpeg)

# CHARA images (combined epochs)

H-band

![](_page_21_Figure_2.jpeg)

# CHARA images (individual epochs)

H-band

![](_page_22_Figure_2.jpeg)

# Images from different software well agree

Anugu et al. submitted

0.5 N (mas) 0.0-≻ \_0.5 --1.0 --1.5 -|--1.5

1.5

1.0

0.5 North Up (mas) 0.0 D 0.0 -0.5

-1.0

-1.5

1.5

1.0-

North Up (mas) 0.0 0.0 -0.5

-1.0

1.5

1.0-

![](_page_23_Figure_3.jpeg)

#### **OITOOLS**

#### **SURFING**

#### ROTIR

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

### 2. Post-AGBs

![](_page_24_Figure_1.jpeg)

IMAGES NOT TO SCALE

#### Planetary Nebula

#### White Dwarf

Supernova

**Neutron Star** 

Black Hole credit:wikipedia

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

# Planets form in evolved stars?

Artistic impression, (c) N. Stecki

#### A planet?

٠

Binary stars one of them is dying

Large cavity in the disc

The disc of dust and gas formed from the matter that was ejected from the dying star

# **Post-AGB binaries**

#### **Backup science:**

- How the circumbinary disks align with binary orbits? Can we image jet forming disk around the secondary? How to explain the long period variability (RVb phenomenon)?

- Do they form exoplanets in their disks?
- With collaboration with Jacques Kluska and H van Winckel group

### How the data look

![](_page_27_Figure_1.jpeg)

### Do they form exoplanets in their disks? Example: AC Her (Anugu et al. 2023)

![](_page_28_Figure_1.jpeg)

# No Evidence of Planet in U Mon system

![](_page_29_Figure_1.jpeg)

The disk gap created by inner binary not by a planet

![](_page_29_Figure_3.jpeg)

# Jets in post-AGB binaries

![](_page_30_Figure_1.jpeg)

AC Her (Bollen et al. 2022)

![](_page_30_Picture_3.jpeg)

### U Mon circumsecondary disk

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

32

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

# AC Her circumsecondary disk

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

# **RVb phenomenon**

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

#### Disk-binary obscuration in our line of sight

![](_page_33_Figure_4.jpeg)

![](_page_34_Figure_0.jpeg)

#### Circumbinary disks

# **Circumbinary disk misalignments**

![](_page_35_Picture_1.jpeg)

AC Her polar circumbinary disk Martin et al. 2023

Made three binary orbits, found all of them misaligned:

U Mon **RV** Tau V Vul

![](_page_35_Figure_6.jpeg)