Measuring the Stellar and Planetary Parameters of the 51 Eridani System

Ashley Elliott, Tabetha Boyajian Louisiana State University CHARA Science Meeting 2024

Jason Wang (Caltech)/Gemini Planet Imager Exoplanet Survey

"Know thy star, know thy planet."

How do planets form?

<u>"Warms Start Model</u>

- Spectrum of initial conditions instead of discrete processes
- Created to address the discrepancies between observations Results in higher effective temperature, and theory predictions larger radii, and high entropy

<u>"Cold" Start Model</u>

- Core accretion
 - Rocky core forms and material accretes onto the core
- ★ Results in lower entropy and smaller radii

The 51 Eridani System

★ Composed of:

- 51 Eridani
- Binary system GJ 3305 AB
- 51 Eridani b
- ★ 51 Eridani and GJ 3305 AB are separated by 66"
- Planet was discovered in 2015 by Macintosh et al. via the Gemini Planet Imager (First one!!)
- A member of the β Pictoris Moving.
 Group
 - Young, nearby group of stars
 - Ages: ~10-30 Myr

Jason Wang (Caltech)/Gemini Planet Imager Exoplanet Survey

Past Work on the 51 Eridani System

Past Work on the 51 Eridani System

51 Eri b		
Parameter	Value	
Radius [R _{Jup}]	0.93 ± 0.04	
Effective Temperature [K]	807 ± 45	
Planetary Mass [M _{Jup}]	3.9 ± 0.4	

ΡΑνο			
Date (UT)	Baseline	Brackets	Calibrators
2015-10-11	E1/W1	7 (5)	HD 28375 HD 27563 HD 29335*
2015-10-12	S2/E2	9 (7)	HD 28375 HD 27563 HD 29335*
2015-11-06	E2/W1	3 (1)	HD 27563 HD 29335*
2016-11-09	W2/E2	3 (1)	HD 27563 HD 29335*
CLASSIC			
Date (UT)	Baseline	Brackets	Calibrators
2021-08-25	S1/E1	1 (0)	HD 26912*
2021-08-26	S1/E1	1(0)	HD 26912*
2021-08-27	S1/E1	4(3)	HD 29248 HD 28736

Observations:

.

• . .

Data Calibration Results:

- Used the bolometric flux and angular diameter to determine a temperature and limb darkened coefficient
- ★ Iterated this process until minimal or no change was seen
- ★ Final results:
 - $\theta_{LD} = 0.450 \pm 0.004 \, \text{mas} \, (\text{PAVO})$
 - $\theta_{LD} = 0.425 \pm 0.026 \text{ mas} (CLASSIC)$
 - T_{eff} = 7424 ± 45 K
 - $L_{\star} = 5.72 \pm 0.1 L_{\odot}$
 - $R_{\star}^{2} = 1.45 \pm 0.01 R_{\odot}^{2}$

Stefan-Boltzmann equation: $L = 4\pi\sigma R^2 T^4$

Elliott et al. (2024) submitted to arxiv & the PASA

"Know thy star, know thy planet."

Age and Mass Modeling

Used two stellar evolution models

PAdova and TRieste Stellar Evolution Code (PARSEC)

GARching Stellar Evolution Code (GARSTEC)
 ★ 51 Eri is considered to be either pre-main sequence (PMS) or zero-age main sequence (ZAMS)

Modeling (cont).:

General Process for both models:

PARSEC:

- Output isochrones
- Interpolate in 1-D to get finer grid
- Interpolate again in 2-D to extract an age and mass
- Monte Carlo simulation for errors

★ GARSTEC:

 Ran GARSTEC models through bagemass, providing priors
 Ran Monte Carlo simulation for errors

"Know thy star, know thy planet."

★ Direct measurements

- \circ Angular diameter
- Parallax
- Bolometric flux

★ Derived stellar properties
 ○ Effective Temperature
 ○ Luminosity

★ Modeled properties ○ Age ○ Mass

Exoplanet characterization Mass Insight on how

Temperature [K]

Now onto the planet...

EYES ON EXOPLANETS

O HOME BROWSE DESTINATIONS MISSIONS Q

You are 97 light-years from Earth

51 Eridani b 🕀

A giant planet composed mainly of gas

\$

COMPARE

Planet Analysis:

 \bigstar

Age is same as star Used Sonora Bobcat models to estimate a mass

 Designed to study L-, T-, and Y- type brown dwarfs and self-luminous exoplanets

Discussion:

Stellar Parameters:

- Angular diameter is 7σ off from Simon & Schaefer's diameter
- ★ Mass agrees with Simon & Schaefer's mass determined using a V-M_K diagram to estimate a mass
- * Age is in good agreement (within 1-2σ) with estimates in the literature

Planetary Parameters:

- ★ Mass is generally in agreement with most estimates in the literature
- ★ Results support ruling out the cold-start formation theory
- ★ Favors either the hot- or warm- start formation theory

HR Diagram

693 unique stars \star Previous diagram \bigstar by von Braun & Boyajian had ~300 unique sources Inspiration to \bigstar update: a birthday present for Stephen Ridgeway

84 exoplanet hosts

http://chara.gsu.edu/science-highlights/stellar-diameters

20

Thank you! Any questions?

Credits: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik.

22

References

- 1. Baines E.-K., White R.-J., Huber D., Jones J., Boyajian T., McAlister H.-A., ten Brummelaar T.-A., et al., 2012, ApJ, 761, 57. doi:10.1088/0004-637X/761/1/57
- 2. Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., Nanni A., 2012, MNRAS, 427, 127. doi:10.1111/j.1365-2966.2012.21948.x
- 3. Brown-Sevilla, S.~B., Maire, A.-L., Molli{\`e}re, P., et al.\ 2023, \aap, 673, A98. doi:10.1051/0004-6361/202244826
- 4. Choi J., Dotter A., Conroy C., Cantiello M., Paxton B., Johnson B. D., 2016, ApJ 823 102
- 5. Dotter A., 2016, ApJS 222 8
- 6. Dupuy T. J., Brandt G. M., Brandt T. D., 2022, MNRAS, 509,4411
- Ireland M. J., et al., 2008, in Schöller M., Danchi W. C., Delplancke F., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 7013, Optical and Infrared Interferometry. p. 701324, <u>http://dx.doi.org/10.1117/12.788386</u>
- 8. Jones J., White R.-J., Quinn S., Ireland M., Boyajian T., Schaefer G., Baines E.-K., 2016, ApJL, 822, L3. doi:10.3847/2041-8205/822/1/L3
- 9. Macintosh, B., Graham, J.~R., Barman, T., et al. \ 2015, Science, 350, 64. doi:10.1126/science.aac5891
- 10. Mamajek, E. E. & Bell, C. P. M. 2014, On the age of the β Pictoris moving group. Monthly Notices of the Royal Astronomical Society, 445(3), 2169–2180.
- 11. Mann A.-W., Feiden G.-A., Gaidos E., Boyajian T., von Braun K., 2015, ApJ, 804, 64. doi:10.1088/0004-637X/804/1/64
- 12. Maxted P.~F.~L., Serenelli A.~M., Southworth J., 2017, ascl.soft. Ascl:1708.010
- 13. Miret-Roig, N., Galli, P.~A.~B., Brandner, W., et al.\ 2020, \aap, 642, A179. doi:10.1051/0004-6361/202038765
- 14. M. Simon and G. H. Schaefer 2011 ApJ 743 158
- 15. Samland M., et al., 2017, A&A,603,A57
- 16. Spada F., Demarque P., Kim Y.-C., Boyajian T.~S., Brewer J.~M., 2017, ApJ, 838, 161. doi:10.3847/1538-4357/aa661d
- 17. Spiegel D.~S., Burrows A., 2012, ApJ, 745, 174. doi:10.1088/0004-637X/745/2/174
- 18. ten Brummelaar T. A., et al., 2005 ApJ 628 453
- 19. Weiss A., Schlattl H., 2008, Ap\&SS, 316, 99. doi:10.1007/s10509-007-9606-5