

Nils Turner

13 March 2024 / CHARA Winter Meeting, Tucson

Let's talk about ...

Let's talk about ...

the rain.

2022-2023 was a record year:

2022-2023 was a record year: 93.49 inches!

Weather

- 2022-2023 was a record year: 93.49 inches!
- ... beating out 1968-1969's 81.23 inches

Weather

2022-2023 was a record year: 93.49 inches!

... beating out 1968-1969's 81.23 inches (80 of it came as snow)

Weather

2022-2023 was a record year: 93.49 inches!

- ... beating out 1968-1969's 81.23 inches (80 of it came as snow)
- Rain year is Oct 1, <YEAR> to Sep 30, <YEAR+1>
- Totals were boosted by a rare tropical storm in August, usually one of the driest months.
- Mount Wilson Observatory kept rain records from 1904 to 1983. 14 of those years have been transcribed.

Based on ARM processors

Based on ARM processors (initially Acorn RISC Machine

Based on ARM processors (initially Acorn RISC Machine - later Advanced **RISC Machines**

Weather & Raspberries

Based on ARM processors (initially Acorn RISC Machine - later Advanced RISC Machines - now just ARM)

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.
- In addition, the SoC contains hardware video decoding.

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.
- In addition, the SoC contains hardware video decoding.
- General Purpose I/O header

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.
- In addition, the SoC contains hardware video decoding.
- General Purpose I/O header
- Currently at version 5

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.
- In addition, the SoC contains hardware video decoding.
- General Purpose I/O header
- Currently at version 5
- Versions 3 and 4 are still useful

- Based on ARM processors (initially Acorn RISC Machine later Advanced RISC Machines – now just ARM)
- Uses a system-on-a-chip (SoC) design where the CPU, GPU, memory controller, video output, and network are all on a single chip.
- In addition, the SoC contains hardware video decoding.
- General Purpose I/O header
- Currently at version 5
- Versions 3 and 4 are still useful
- Pi Zero 2W is also popular
 - Same SoC as Pi 3
 - Wifi connectivity
 - Intended for embedded device projects
 - Inexpensive \$15

- Genuine Pi's use Broadcom SoC's
- Other popular SoC's are made by Amlogic and Rockchip

- Genuine Pi's use Broadcom SoC's
- Other popular SoC's are made by Amlogic and Rockchip
- Libre Computer makes clones using both of these SoC's
 - Amlogic: AML-S905X-CC \$35

- Genuine Pi's use Broadcom SoC's
- Other popular SoC's are made by Amlogic and Rockchip
- Libre Computer makes clones using both of these SoC's
 - Amlogic: AML-S905X-CC \$35
 - Rockchip: ROC-RK3328-CC \$45

- Genuine Pi's use Broadcom SoC's
- Other popular SoC's are made by Amlogic and Rockchip
- Libre Computer makes clones using both of these SoC's
 - Amlogic: AML-S905X-CC \$35
 - Rockchip: ROC-RK3328-CC \$45
- Dozens of other single-board computer manufacturers; they tend to be more expensive.

	SoC	Price	Retail
Pi Zero 2W	Broadcom	\$15	www.pishop.us
Pi 3	Broadcom	\$35	www.pishop.us
Pi 4	Broadcom	\$45	www.pishop.us
Pi 5	Broadcom	\$60	www.pishop.us
AML-S905X-CC	Amlogic	\$35	www.amazon.com
ROC-RK3328-CC	Rockchip	\$45	www.amazon.com

Georgia<u>State</u> University

NOR

Lab

Raspberry Pi Zero 2W

Libre Computer AML-S905X-CC

Observatoire

LESIA

Georgia<u>Stat</u> Universit

Installing Ubuntu

- The Pi is fully supported by Canonical, the Ubuntu parent organization, since Ubuntu 18
- Detailed directions can be found in the CHARA git tree module chara-documentation, howto/Installing_Ubuntu_Raspberry_Pi_4.txt
- ► For a copy of the directions, email me at: nils@gsu.edu

Installing Ubuntu

In summary (using a Linux machine):

- Download the "preinstalled server" image of the desired version
- Get a MicroSD card
- Use the dd command to copy the image to the MicroSD card
- Put the MicroSD card into the Pi and start it up
- Set an NTP server address
- Reboot
- Update packages
- Set up the network
- Optionally) Install a window manager

Programming the I/O Header

- ► The Pi includes a programmable I/O header
- Basic programming involves a Python3 library
- The library is installed with the following command: apt install python3-lgpio
- The Python3 library uses the /sys bus, so one could conceivably write code to address the /sys bus directly
- The header contains:
 - 3.3V, 5V, and ground pins
 - 26 general purpose I/O pins (GPIO) which can be configured to be TTL inputs or outputs, pulse-width modulation outputs, or serial peripheral interfaces
 - 2 of the 26 GPIO pins can be programmed to control an I²C bus
 - 2 pins are dedicated to an RS-232 serial interface

Using the Pi in a Scientific Context

- Many hardware manufacturers now include linkable libraries for the ARM architecture to control the devices they sell
- This includes ZW Optical and IDS Imaging, both of whom make CMOS cameras that we use in the CHARA Array
- Also at the CHARA Array, we use the GPIO header to control our AO beacon

Fun Stuff with the Pi: Kodi Media Player

Fun Stuff with the Pi: Kodi Media Player

Fun Stuff with the Pi: Audiophile-grade Streamer

Fun Stuff with the Pi: Composite Video Player

