

Interferometry on the Fringe: Cutting Edge Developments at Lowell

Dr. Gerard van Belle Lowell Observatory

Welcome to Acronym Word Salad

- ► BFT
- MoonLITE
- AeSI
- KISS

Missing Affordable Low-Hanging Fruit

- Bright, small objects
- Imaging with dense {u,v}
 coverage
- Aggregate 30 years of 'lessons learned' in design, construction, operations, and data reduction

Primary Target: Main Sequence STARS

BFT – Big Fringe Telescope: Overview

- Compelling, focused science case
 - Exoplanet host surface imaging
 - Solar analog surface imaging
 - Exoplanet transit movies
 - Component-resolved binary stars
- Additional general science cases

Affordable architecture

- COTS parts, 30-years-newer technology, eliminate vacuum & other expensive infrastructure, true parts commonality
- Construction & O&M costs baked into design from start
- Single, robotic observational mode
 - Requirement for <3% annual operations costs</p>

Focused 'Marquee' Science Program

EXPRES EPRV 100 Earths

- Brewer+ 2020, table 1
- 65 objects
- 0.40-0.60mas: 31/65
- 0.35-0.55mas: 31/65
- V<7.6 and K<5.6 for both</p>

Exoplanet transit movies

 TFOP: 29 targets with TESS G<7.5, Rplanet > 5 RE, DE>-10, median ~0.40mas

Solar analogs

- S-cubed: 69 targets from Radick+ 2018
- 0.40-0.60mas: 35/69
- V<6.7 and K<5.0 for all</p>
- Resolved binaries
 - Pourbaix SB9 has 77 targets with DE>-10 and:
 - P<1000d, a~5-360mas, 0.30-0.70mas

Overall Requirements

Resolution

- ▶ Target 'sweet spot' of 0.40 0.60 mas, 20µas pixels
- Snapshot imaging

Sensitivity

- Visible (Johnson V, R): < 7.6 (requirement) < 8.0 (goal)</p>
- Near-infrared (Johnson H, K): < 5.6 (requirement) < 6.0 (goal)</p>

'Butterfly' diagrams

Exoplanet transits

Required Resolution

- Number of pixels across star?
 - Relative size of spots to disk
 - Spot migration tracking
 - > 30 x 30 pixels is target
 - Imaging resolution = $1.22 \lambda/B$
 - 'Airy criterion'
 - Modeling resolution = 0.25 λ /B
 - 'Michelson criterion'

Overall facility scale

- 'Pixel' scale: dictates longest baseline
- Fringe tracking: dictates short baseline spacing
- Longest baseline has to be made up of short baselines
- 0.40-0.60 mas stars with
 20uas pixels → 2.2km

Wavelength-Baseline Bootstrapping

- Track at H-band with short baselines, short atmospheric coherence times
- Image in R-band with medium, long baselines, long synthetic coherence times
- H-band fringe tracking with V²>0.20 means for 0.50 mas star, B_{min}=385m

Nominal Layout

- I6 x 0.5 m telescopes
- Small telescopes
 - 'Commodity item'

2,200m ring

Long DelavLin

2200 m

- Sufficient angular resolution for 0.40-0.60 mas targets, ~30x30 20 µas pixels
- Station 0' robotic operations already started at Lowell
- Enough area for sensitivity requirement
- Tip-tilt is sufficient
- Siderostat feed
- ~\$150k per station

Nominal Infrastructure

Lots of high, flat, available land in northern Arizona

No vacuum systems

- Eliminate significant cost infrastructure (both construction & O&M)
- Fiber beam transport
 Testbed in lab at Lowell already

Next-gen high-speed delay lines Current DLs are 30+ year old technology NSF ATI submitted for development Robotic operations PTI-like automation Reduce ops costs

Scalable Development

Lab → single baseline → full deployment

Snapshot from simulated planet transit movie

MoonLITE

What is MoonLITE?

LITE = Lunar InTerferometry Explorer

- A submitted NASA Astrophysics Pioneers proposal
- A two-element, 100 meter Michelson interferometer
- CLPS-delivered to lunar surface
- Capable of V=17 isolated objects, for objects 0.1 1.6mas in size, measure 0.1-5.0% sizes

Lester (2006)

"The only thing the moon has to offer astronomy is

dust

and gravity"

(slightly paraphrased)

Dust: LUT on board Chang'e-3 Lander
UV telescope with years of operations (2015 - 2018+)
Dust not a problem

Gravity

It's not a bug, it's a feature

- Eg. Surveyor 3, Apollo 12: 180m baseline, stable relative position for the past 50 years
- Nearly perfect for large optical interferometers
- Formation flying is unsolved, expensive
- Greatly simplifies pointing
 - Stable reaction mass
 - 'Solved' for orbital platforms, but expensive and buggy – Eg. HST reaction wheels, Kepler, IUE, etc.

Other Features

No atmosphere

- No atmospheric coherence time limit
- A 2" aperture has greater sensitivity than an 8m VLTI aperture after first second of integration; 300+ sec possible

> Free vacuum \rightarrow clean beam propagation, no vacuum machinery

Stable surface

 Apollo seismometer data indicates <20nm vibrational background on week+ timescales

NASA Commercial Lunar Payload Services (CLPS) Landers

- Hosted payloads to the lunar surface, with rover
- Allowable under NASA Astrophysics Pioneers

NASA Commercial Lunar Payload Services (CLPS) Landers

Intuitive

Machines

- Hosted payloads to the lunar surface, with rover
- Allowable under NASA Astrophysics Pioneers

NASA Commercial Lunar Payload Services (CLPS) Landers

Launched Feb 15

Landed on Feb 22

The Pioneers CLPS Box

\$20M cap 50 kg, 200 W, 300kbps Daytime operations only

100 meters

Emphasis on simplicity: one deployment step

Given lunar surface stability, hosting by lander, resources can be focused on the experiment itself

MoonLITE: Lunar InTerferometry Explorer

collector til (white

rovided

power, com

lander

beam combiner instrument

- Brown dwarf diameters
- YSO terrestrial planet forming regions
 AGN core binarity / structure
 Spacetime foam limits

Status

- Proposal declined
 - Resubmission encouraged
 - Supporting NASA SAT, NSF ATI proposals also submitted
- Progress with building opEDU with internal funds
- Aim to test opEDU in lab and then on-sky with telescopes available at Lowell
 - Tech can apply to BFT as well

AeSI

Artemis-enabled Stellar Imager

- NASA NIACfunded study
- 30 x 1m telescopes
 500m @ 1200Å

Keck Institute of Space Studies (KISS) Study Program

KISS Study Program: "Astronomical Optical Interferometry from the Lunar Surface"

