Updates from the Exeter group: MIRC-X upgrades and science

Stefan Kraus, Dan Lancaster, Isabelle Codron, Tyler Gardner, Sorabh Chhabra, Jyotirmay Paul, Owain Snaith

and CHARA, UM & INAF colleagues, incl. Narsi Anugu, Andrea Bianco & Michele Frangiamore

Exeter update

XETER

KYOTO SANGYO UNIVERSITY

MIRC-X / BIFROST synergies

- Subsystem Design / Manufacturing:
 - APD cameras (low-dark optimization, long-wavelength suppression, ...)
 - VPH gratings
 - Photonics combiners
- Methodology:
 - Optical designs to reduce thermal background
 - Dual-field interferometry (see also Narsi's talk)
 - Cophasing in data processing
- Pipeline:
 - ABCD pipeline (also needed for SPICA-FT and MYSTIC GRAVITY chip)

MIRC-X: C-RED One upgrade

- Camera shipped to France: Dec 28 → April 3
- Special thanks to Craig, Narsi, Cyprien, Rob, ... and to science users for their patience!
- Installation of new sensor and read-out electronics •

bservatoire LESIA

- Rapid iteration in March to decide on optimal filter combination + read-out mode:
 - \rightarrow adopted low-risk filter strategy (HKHK filter, "high-speed")

erc Science and Technology **Facilities Council**

MIRC-X camera sensor before upgrade

UNIVERSITY

SYDNE

Vational

Jniversitv

MIRC-X: C-RED One upgrade

- New sensor, latest APD generation; reduced vibration imparted to the detector
- Not limited by dark current anymore •
 - → Essential for realizing long DITs needed for high-spectral resolution & dual-field
- Now limited by thermal background, set by cold stop size needed for AIO combiner
- Sensitivity gains to be quantified

		Dark Current w/cold stop [e-/s/pix]	Dark Current + Thermal BG [e-/s/pix]	Read noise [e-/pix]
"Low dark" (max 868 fps)	Gain 10	3.6	31.0	3.6
	Gain 50	27.7	70.4	0.8
"High speed" (max 3440 fps)	Gain 10	7.2	45.3	3.8
	Gain 50	39.8	97	0.8

Reduced from $\sim 100 \text{ e}/\text{s/pix}$ Reduced from ~200 e-/s/pix

MIRC-X: C-RED One upgrade

Exeter update

UNIVERSITY OF

ETER

KYOTO SANGYO UNIVERSITY

調

MIRC-X: C-RED One upgrade

Report of correlated noise (developing after few minutes)

- \rightarrow to be discussed with manufacturer
- → monitor problem & observers please report back to us!

MIRC-X: development roadmap

Goals:

- realizing full sensitivity gain from new camera
- improving calibration accuracy

Implementation pathway #1: cryogenic MIRC-X Implementation pathway #2:

SPICA-FT (H-band)

- Ultra-broadband PIC device: J + H band simultaneously
- Change optical layout to reimage grating onto cold stop
 - \rightarrow allow reducing the cold stop size from f/4 to f/12
 - → reduce thermal background from 82 e-/s/pix to 4 e-/s/pix

MIRC-X: development roadmap

Camera developments under consideration:

Left-over Saphira sensor from MIRC-X camera → camera for STST?

Science-grade 'Ike Pono' device with 1k×1k pixels procured → future MIRC-X science camera?

MIRC-X: VPH R=6000 gratings

- R=6000 gratings: He I 1.08μm Paβ 1.28μm
- High-efficiency 75...80%
- Manufactured by INAF team: Andrea Bianco + Michele Frangiamore
- To be installed by Dan Lancaster, initially for 4T operations; later 6T with 75mm lens

Exeter update

l'Observatoire LESIA

Interferometric Survey

ETER

Science: High spectral dispersion

(1) Classical Be stars

GeorgiaStat

University

Detailed kinematical studies (Kraus+ 2012)

THE UNIVERSITY OF SYDNEY

Science: High spectral dispersion

Science: High spectral dispersion

(3) Companion detection / spectral classification

KYOTO SANGYO

Science: Survey on Herbig stars

Inner/outer disk misalignments & origin of shadows

Temporal variability near the dust sublimation rim

Georgia<u>State</u> University

Jyotirmay Paul Stefan Kraus Owain Snaith

Exeter update

Science: Gaia binaries

- Orbital elements from Gaia
- Scale between Gaia orbit and our data point gives semi-major axis → Dynamical Mass of system
 - Better include our data point in fitting!
 - Not possible without epoch data from Gaia
- Flux ratio and photocenter orbit → can get **individual masses**

THE UNIVERSITY OF SYDNEY

 $(M1+M2)^{1/3} P^{2/3} [M2/(M1+M2) - f/(1+f)] = a_{photo} / plx$

Australian National University

KYOTO SANGYO

Observatoire LESIA

Science: Gaia binaries

KYOTO SANGYO JNIVERSITY OF Australian 調 Exeter update bservatoire LESIA THE UNIVERSITY OF SSP **ER** GeorgiaState SYDNEY National Interferometric Survey University UNIVERSITY University of Stellar Parameters

Science: Gaia binaries

Interferometric Survey

HD 6462 Orbit

-- Gaia photocenter

CHARA detection

- Intermediate-mass binaries \bullet
- Asteroseismology and low-metallicity targets (see Yi's talk)

ΔDec (mas)

2

-2 -4

7.5

5.0

2.5

bservatoire LESIA

0.0 ARA (mas)

National

University

Georgia<u>State</u> University

Summary

MIRC-X:

- Camera future-proofed: moderate sensitivity gain now; large gain in future; work needed on correlated noise
- VPHG R=6000 for Pa β and HeI line to be installed in June
- Plans for J+H photonics beam combiner upgrade

Science:

- YSO multi-epoch imaging (Codron, Stefan, Jyotirmay, Owain)
- Gaia binaries (Yi, Tyler)
- High-spectral dispersion companion detection/characterization (Dan)

