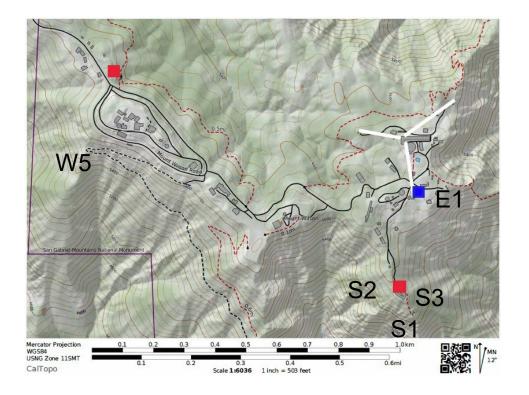
Progress: CHARA Michelson Array Pathfinder (CMAP)

Robert Ligon eligon@gsu.edu

Goals of the Project

Goals:

CMAP: Progress


1. To show the capability to use fibers as the mode of transport for science by getting consistent fringes that can be calibrated for science use.

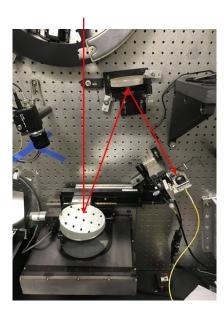
INOIR

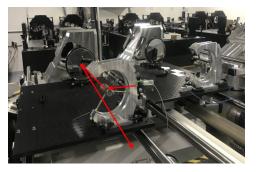
- 2. Build a mobile telescope with fiber transport to allow baseline flexibility to extend our capabilities.
 - S1-S2-S3 baselines: ~ 20 m
 - E1-S4 baseline: ~ 600 m

Observatoire

• E1-W5 baseline: ~ 1100 m

S4 Topo map of CHARA



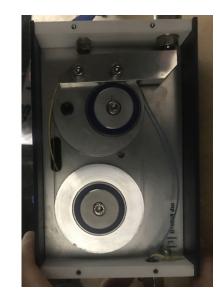


Major Aspects of the Project

- 1. Mobile Telescope: telescope, instrument bench, enclosure, and sites
- 2. Fiber transport- Injection/transport/collimation
- 3. Control software
- 4. Fiber zero path stabilization

Work done from 2024 mtg

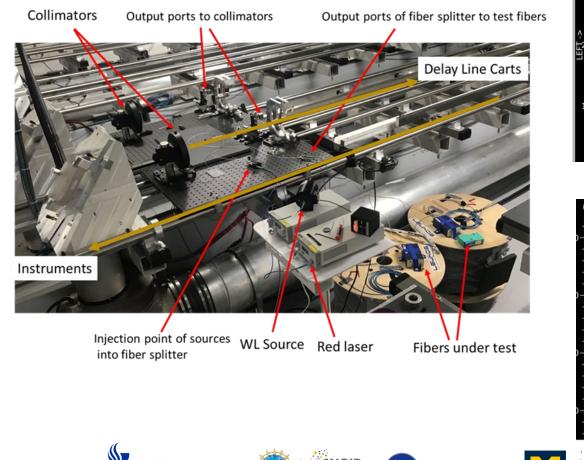
- Iron out fiber metrology system design- 0% (work has been done in prior year)
- Experiments on fiber before going on-sky- 50%
- Installation of the fiber conduit- 50%
- Build, test, and integration of the nasmyth instrument bench onto the mobile telescope- 25%
- Continued work on the control software- 25%
- Fringes(in lab, outside, on-sky)- 20%
- On-sky tests- 0%



Fibers

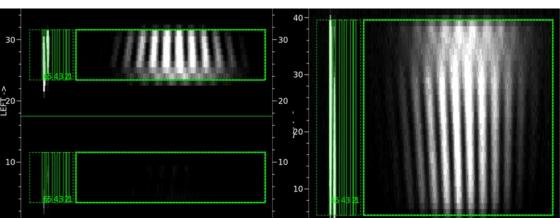
- The fibers arrived in April of 2024
- Power test done at 1470 nm

	delivery			
IN-OUT	[dBm]	% out/in		
F1	-0.9	0.81		
F2	-1.1	0.78		
F3	-1.2	0.76		
F4	-0.4	0.91		
F5	-0.8	0.83		
F6*	-1.9	0.65		


XETER

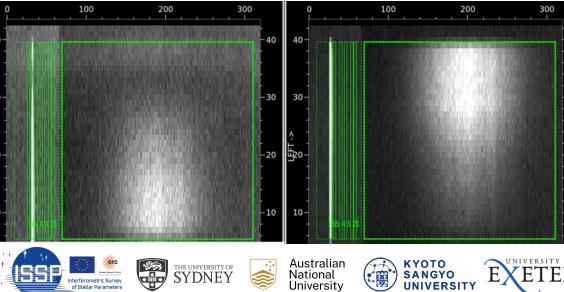
Fiber Testing Setup

After the basic tests for functionality, we worked on getting fringes between fiber pairs We have been using a Thorlabs PM fiber splitter for 1550 nm. Woll50 The red laser was used for labao


Observatoire LESIA

Georgia<u>State</u> University

CMAP: Progress


Observatoire

G190 ~ 9 nm/pixel

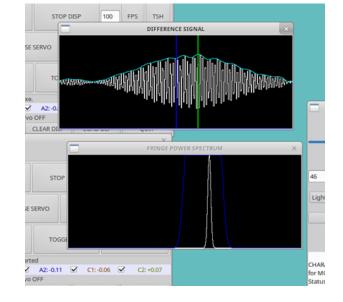
ETER

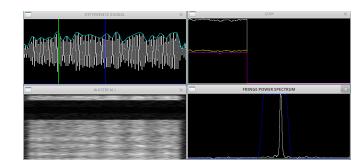
Flux from each arm

National

University

THE UNIVERSITY OF SYDNEY


Fiber Testing 1


The plan was to scan for the fringes with CLASSIC then look in detail with MircX

Contrast from LEUKOS: no fiber setup contrast 82%

Fringe contrast			at λ =1.55μm		$\Delta\lambda$ = 12nm	
B∖A	Fibre 1	Fibre 2	Fibre 3	Fibre 4	Fibre 5	Fibre 6
Fibre 1		33%	55%	53%	37%	51%
Fibre 2	32%		37%	28%	26%	37%
Fibre 3	53%	36%		40%	43%	60%
Fibre 4	56%	30%	42%		72%	42%
Fibre 5	39%	27%	41%	72%		44%
Fibre 6	55%	38%	60%	42%	42%	

F4 and F5

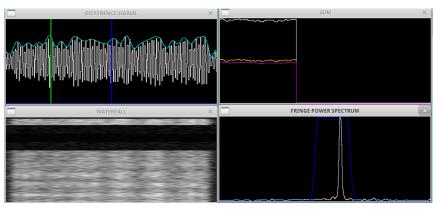
F3 and F5

Observatoire

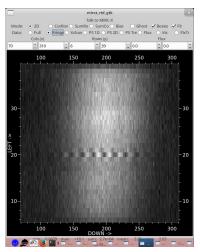
Georgia<u>State</u> University.

CMAP: Progress

ISSP

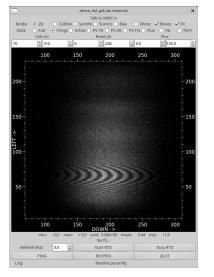

Fiber Testing 2

ISSP


Interferometric Survey of Stellar Parameters

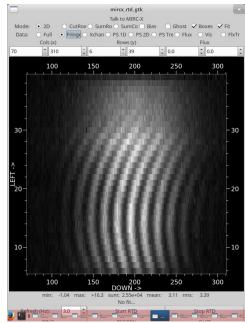
UNIVERSITY OF MICHIGAN

F3 and F5

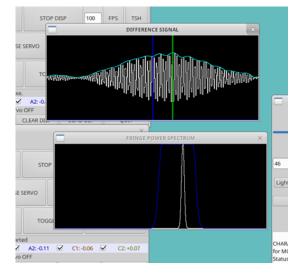


G190

Observatoire


CMAP: Progress GeorgiaState University. P1170

l'Observatoire LESIA


NOIR Lab F4 and F5

G190

THE UNIVERSITY OF

Australian National University

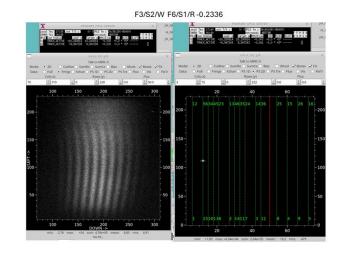


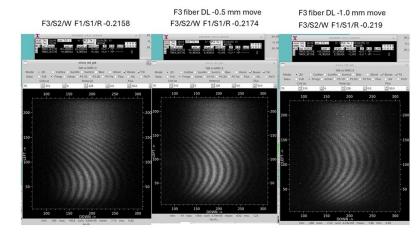
EXETER

KYOTO SANGYO UNIVERSITY

Fiber Testing 3

Looking at all the combinations for fibers 1,2,3,6 P1170


NOIR Lab


Georgia<u>State</u> University.

CMAP: Progress

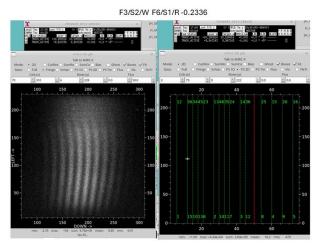
Observatoire

l'Observatoire LESIA

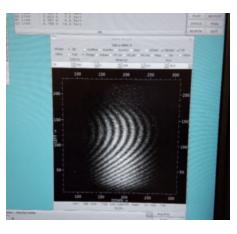
Fiber dl 6mm air/mm dl actuator

Interferometric Survey

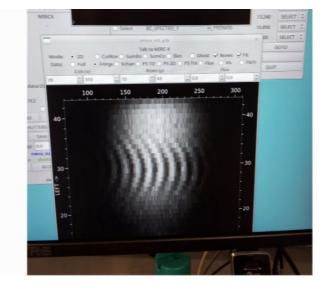
CHARA


The CHARA Science Meeting 2025

Fiber Testing 4


Unspooling fiber 3: There is \sim 630 meters of fiber wrapped around the spool.

~ 600 meters was unspooled: with F6 and P1170


Before unspooling

After unspooling

After unspooling: G182

KYOTO SANGYO UNIVERSITY UNIVERSITY OF

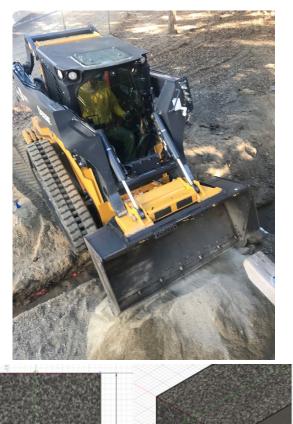
ETER

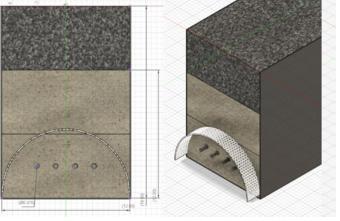
Fiber Transport

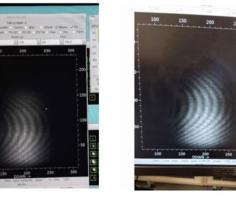
The CHARA Science Meeting 2025

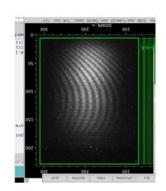
Trench at about an 18 inch depth for thermal stability ٠ Insulated pipe where burial not feasible

NOIR Lab


Fiber Transport

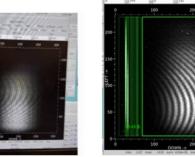

- Trench at about an 18 inch depth for thermal stability
- Insulated pipe where burial not feasible
- 1 week of contracted work to dig trench
- 1 week of CHARA labor to lay the fiber: pipes at ends, ople trench




Fiber Testing 5 outside

Trenching the fibers before winter were critical else we could not get started till this spring.

F1/F6 outside 11/14/2024


F6/S2/W F1/S1/R-0.122

F2/F6 20241114

Australian National University

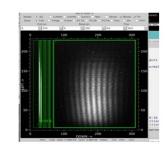
F6/S2/W F2/S1/R-0.122

outside left; lab right Less of higher wavelengths? Splitter?

Observatoire

Georgia<u>State</u> University

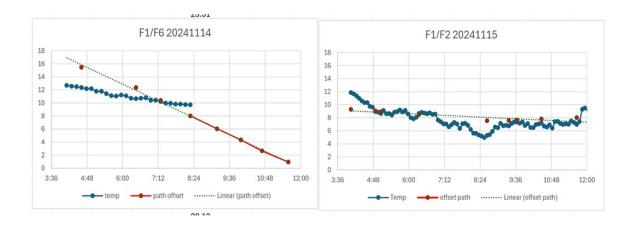
CMAP: Progress


INOIR Lab

Dbservatoire LESIA

THE UNIVERSITY OF SYDNEY

Interferometric Survey



F1/S2/W F2/S1/R -0.140

Fiber Testing 6 outside

Thermal opd changes: F1 and F2 were in the same fiber vault for this test F6 was in the S3 fiber vault Linear change in length with temperature.

Fiber Testing 7: loose spools

Unspooled fiber

Fiber unspooling apparatus

Summary/Future Work

What do we have left? Lots

- Fiber tests
 - two fibers left in lab
 - when fibers are unspooled into the loose foam
 - calibrate wl source flux
 - polarization checks at the back end
- Installation of the fiber conduit to E1 and S4: F4 and F5
- Build, test, and integration of the nasmyth instrument bench on the mobile telescope
- Experiments on fiber stability- Ongoing
- On-sky fringes

Concerns: The dominating component of the dispersion can only be dealt with by the fiber delay line

- Bulk glass for length difference
- Birefringent material to match the beat lengths of the two polarization axi
- Lay fibers to E1 and S4 or above?

