

First results of photonic-based interferometry with the CHara ARray Integrated Optics Testbed (CHARIOT)

Kévin Barjot, Aline N. Dinkelaker, Alyssa V. Mayer, Lucas Labadie, Nicholas J. Scott, Narsireddy Anugu, Gail Schaefer, Aurélien Benoît, Robert R. Thomson, Kalaga Madhav, Theo ten Brummelaar, Karolina Kubiak, Edgar R. Ligon

Plan

1. The CHARIOT project at CHARA

- 2. On-sky results
- 3. Conclusion and outlook

CHARIOT at CHARA

3

Objectives of CHARIOT

CHara ARray Integrated Optic Testbed (CHARIOT)

1. Assess the performance and potential of laser written K-band IO for long-baseline

interferometry

2. Foster high-precision (1% goal) V2 interferometry for high-contrast science (debris

disks) following JouFLU decommissioning

- 3. Offer a community-wide platform to test novel photonic concepts
- 4. Deployment of a 4-telescope beam combiner for nulling interferometry

1. CHARIOT at CHARA

Ultrafast Laser Inscription (ULI)

- less manufacturing processes
- more degrees of freedom (3Dinscribed waveguides)
- versatile
- targeted and low production

Limitations: need of iterative characterization to get repeatable results

1. CHARIOT at CHARA

Ultrafast Laser Inscription (ULI)

4T H-band DBC chip (Nayak+2021)

6T J-band DBC chip (Dinkelaker+2023)

3T N-band combiner (Rodenas+2012)

1. CHARIOT at CHARA

Photonic-based instruments

CHARIOT Development phases

CHARIOT at CHARA

GeorgiaSta

GeorgiaStat Universit

CHARIOT at CHARA

Observatoire

LESIA

A. Dinkelaker, A. V. Mayer

CHARIOT table

GeorgiaStat Universit

CHARIOT at CHARA

Observatoire

A. Dinkelaker, A. V. Mayer

11

CHARIOT at CHARA

1. CHARIOT at CHARA

A. Dinkelaker

13

1. CHARIOT at CHARA

CHARIOT - 2T ULI beam combiner

Optimization & laboratory characterization (Siliprandi et al. 2024)

14

1. CHARIOT at CHARA

CHARIOT at CHARA

A. Dinkelaker, A. V. Mayer

Camera

FTFR

XETER

E

2. Results

Data acquisition (temporal encoding)

17

2. Results

Internal source

CLASSIC/JouFLU data reduction pipeline (cf. TR96, TR97)

Australian

University

National

THE UNIVERSITY OF

SYDNE

Interferometric Surve

KYOTO SANGYO

UNIVERSITY

2. Results

19

G. Schaefer

2. Results

On-sky visibilities

Baseline: S1-S2 (34m)

Conclusion

Conclusion

Summary

Conclusion:

- the optical system was improved
- ULI-BC in K band gave first light on sky (~10 targets)
- K-mag 4 target observed

Outlook:

- observing run in July 2025
- implement a fringe tracker with MIRC-X
- improve the imaging optics alignment
- combining 4 CHARA telescopes
- optimization of the testbed accessibility

LESIA

KYOTO SANGYO

22

Thank you Merci

XETER

E

CHARIOT at CHARA

bservatoire

LESIA

GeorgiaStat

Universit

A. Dinkelaker, A. V. Mayer

Pick-off table

24

Data reduction

CLASSIC/JouFLU data reduction pipeline (cf. TR96, TR97)

25

Plug and play

Improve the output interface:

- V-Groove
- FC connector
- bare fiber

Novel Astronomical Instrumentation through photonic Reformatting (NAIR)

- Astronomical Photonic Reformatter EXperiment for Infrared Science (APREXIS)
- Development of ULI technology
- Proposes modular instruments for high contrast imaging (CHARA, VLTi)
- Multi-core Integral Field Unit (MCIFU) spectroscopy
- Multiplexed Discrete Beam Combiner

