From the rebirth of optical interferometry to its future in astronomy

Pierre Léna

Observatoire de Paris & Université Paris-Cité

CHARA Science Meeting. - Nice, April 28-30, 2025

Optical interferometry in astronomy : a clear filiation Hippolyte **Fizeau** (1851 to 1868), Albert Michelson (1891 to 1920), Antoine Labeyrie (1975 to today)

Michelson, *Phil.Mag*.30, 1890
Michelson, *Nature*, 45, 1891

Building the GI2T Calern ca. 1978

Archives *Académie des sciences,* Fonds 64J, H. Fizeau File 9.01, 1851

University UNIVERSITY

Two fertile interferometric decades (1980-2000) Triggered by Labeyrie's success, small interferometers are built in Australia and USA, while Europeans plan for a VLT Interferometer: 4 telescopes (8-m) +4 (1.8-m)

Phase recovery and imaging

Dual feed & fringe tracking

Georgia<u>Stat</u> Universit

Dbservatoire LESIA

Vincent Foresto

Meudon

2D - Infrared detectors

Format↑ Noise↓

Spatial filtering & SM fibers

 $r_o(\lambda) \propto \lambda^{6/5}$

 $\tau_o(\lambda) \propto \lambda^{6/5}$

Guy Perrin

Meudon

Pierre Léna Astronomy's Quest for

Sharp Images From Blurred Pictures to the Very Large Telescope

The story Springer

D.L. Fried Albuquerque

Seeing properties and λ dependence

François Roddier

Nice, Tucson

Reinhard Genzel Garching

Roger Angel

Speckle & Lucky imaging

Spectro-imaging D.Bonneau, D.Mourard Nice

Adaptive optics is the key for the interferometric future

US Defence Programs : 1966-1992 RESTORATION OF ATMOSPHERICALLY DEGRADED IMAGES VOLUME 2 WOODS NOLE SUMMER STUDY JULY 1966 Advisory Committee to the Air Force Systems Command NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL

MultiMirror Telescope (1983-1985) Speckles and fringes in Arizona

1981 - 1985: Developments of ACE (Atmospheric Compensation Experiment) at MIT-LL. Installed at AMOS 60-cm in 1982.
On loan to Mt Wilson in 1992 (astronomical use)
1992: Special issue of JOSA. Declassified results. AO on Keck P. Wizinowich 2000

Observatoire de Haute Provence, Octobre 1989.

SANGYC

UNIVERSITY

Image corrigée

 v_2 Andromède, $\lambda = 2.2 \mu m$

Image non corrigée

Télescope de 1,5m

Australian

National University

COAST, Cambridge, UK

J. Baldwin (end 1980s)

Mark III, Mt. Wilson (1986) M. Shao & M. Colavita

IOTA, Cambridge USA (1990s)

Erlangen (Germany) G. Weigelt (end 1980s)

W. Traub CERGA (France) : 12T (1974), GI2T (1986), Soir d'Eté (hétérodyne) ing (1986) A. Labeyrie et al, P. di Benedetto, J. Gay, F. Roddier

IRMA, Wyoming (1986) M. Dyck, S. Ridgway

University

CHARA, Mt.Wilson, GSU
 H. McAlister (end 1980s)
 MMT, Arizona, a Fizeau interferometer (1983)
 Keith Hege et al. , J. Beckers, F. Roddier
 10.6 μm heterodyne @ McMath (Arizona), Mt. Wilson (1974..)

Ç. Townes

A constant and fertile collaboration(1980-2000) ESO - NOAO A small community, but organized exchanges ESO – NOAO (Oracle, Ariz, 1987)

University

UNIVERSITY

SUSI, Australia (1985) J. Davis & W. Tango

The 2025 interferometric landscape

CHARA, LBT, MROI, NPOI, LBT in United States **VLTI** in Europe

What is next ?

January 27-30, 2025, celebrating the 40th anniversary of VLTI start (1985)

Could some of these rich *Horizons* help shaping the future ? Could one learn from some similarities with the 1980s when ESO (for VLT) and NOAO (for NNTT) were exploring this future ?

The next ESO Programme should be identified in line with ESO's vision and strategy. It should be a transformational facility in the 2040s landscape : <u>http://next.eso.org</u> (Mérand*, in *Horizons Conf. 2025*)

KYOTO SANGYO

UNIVERSITY

Horizons for Galactic & Extragalactic astronomy

Shimizu T (Garching), in Horizons 2025

• *J0920: First dynamically measured SMBH masses $10^8 M_{\odot}$ at z=2.3 (Abuter+ 2024)

Observatoire

LESIA

- The curious case of the Little Red Dots JWST (Matthee+ 2024)
- Resolving the accretion disks of SMBH
- * The S2 Experiment in other galaxies

Eisenhauer F (Garching), in Horizons 2025

- Kilometers baseline interferometer
- Resolution 10 marcsec, Sensitivity m_{AB}=28

Isbell J (Tucson), AGN in the 2040, in Horizons 2025

• Shape and nature of the BLR

Genzel R (Garching), in Horizons 2025

Massive black holes in galaxies (beyond Gravity, LIGO, EHT)

Iniversity

Horizons for Stellar astronomy

Observatoire LESIA

Kervella P (Meudon), in Horizons 2025

- Stellar activity
- Seeds of SMBH on Gaia astrometry

Georgia<u>State</u> Universit

Stellar physics and interferometry in the 2040s

- Many exciting scientific questions:
 - Star formation, late stages of stellar evolution, angular momentum transport, convective energy transport, role of magnetic fields, stellar activity and star-planet interactions, most massive stars, Population III stars...

Key technical requirements:

- High spectral resolution mode (R~100,000) broadband spectroscopy with exoplanet-level stability (spatially resolved RVs on stellar disks and binaries)
- High angular resolution (<100 µas), matching the interferometer sensitivity, to resolve fine surface structures, reach extragalactic objects, rare MW stars and compact objects
- Microarcsecond astrometry, wide-angle phase referencing and dual field for Gaia follow-up and dynamical studies of multiple star systems

Australian

Jniversity

KYOTO SANGYO

UNIVERSIT

Some concluding remarks

During the 1980s, physics was clear, instruments were primitive, early scientific prospects were great, while **adaptive optics was the major stumbling block** and the community at large remained skeptical

Three major factors played favorably : some **key person's** vision, a **strong cooperation** on both sides of Atlantic and agreement to **postpone space interferometry** to a remote future

Adaptive optics was solved (1989) + Spatial Fitering (SM fibers) CHARA, KECK and VLTI followed with superb engineers

At the 2040 Horizon

No question anymore on the science potential of an ambitious, ground-based interferometry program

FUTURE 1

Upgrading existing instruments (CHARA, VLTI at ELT era) seems feasible

FUTURE 2

A new kilometric Array is a formidable and costly task Stumbling blocks : Km beam transport Phase delay compensation Overall Throughput Sky coverage (dual beam)

Organize broad, transatlantic continuous exchanges (ESO, NoirLab).... Dare exploring unconventional solutions (Quantum physics...)

ISSP

EXETER