The Radius Inflation Problem: Ditching Eclipsing Binaries

Becky Flores

Georgia State University

Advisor: Russel White

bflores5@gsu.edu

Swane et al. 2024

The Problem

- Models don't match observations
- Different ideas
 - Stellar activity
 - Magnetic activity inhibits convection, leading to inflation to conserve flux
 - Star spots
 - Spots create variations flux and affects R by transit method
 - Tidal locking
 - Short Period Eclipsing Binaries
 - Metallicity
 - Models don't account for metallicity correctly-missing physics/opacity affects R for a fixed mass
- >> Disagreement between various studies
 - Note: single stars, small metallicity ranges, short period EB's (<50 d).
 - Berger et al. 2006, Boyajian et al. 2012, von Boetticher et al. 2019, Swane et al. 2024.. and more.

Motivation & Research Plan

- Sample of new, precise M&R grids for testing stellar evolution models
 - Visual Doubles to represent single stars & free from tidal interactions
- Use MIRC-X/MYSTIC for precise angular diameters
- Masses from literature

Sample of Visual Doubles

Washington Double Star Catalog

• ρ (last meas.) \geq 4.5"

13 systems, 26 stars total

- 11 binaries, 1 triple
- exclude WD GJ 166 B

P > 88 yrs

D < 12 pc

14 CHARA Measurements

- Classic
- Pavo
- Flour

Valuable checks across beam combiners

15 with Mass Info

- 11 dynamical mases
- 4 mass ratios

21 observed so far

- 1 left for 2025B
- 4 left for 2026A(March)

Sample of Visual Doubles

Common		D (ma) SmT P (yrs)		Common			CnT	P (yrs)	Ν.4			
Name	GJ	D (pc)	Spi	a ('')	IVI _O	Name	an n (hc) a		Spi	a ('')	IVI _O	
61 Cur	820 A	3.497	K5V	618.7	0.6771 + 0.0052 - 0.0051	kci Roo	566 A	<mark>6.754</mark>	G8V	152.0	0.954 + 0.073 - 0.050	
orcyg	820 B		K7V	25.25	0.6289 + 0.0094 - 0.0092	KSI DUU	566 B		K5V	4.920	0.748 ± 0.011	
	725 A	3.523	M4V	653.3	$M / M = 0 = 44 \pm 0.020$		250 A	8.747	K3V	Und.	Und.	
	725 B		M4.5V	19.84	$W_b/W_a = 0.544 \pm 0.050$		250 B		M2V	[65.20]		
GX & GQ	15 A	3.562	M1V	1226	[0 50]		505 A	10.99	K1V	607.0	[0.93]	
And	15 B		M3.5V	26.95	[0.59]		505 B		M1V	6.360		
	166 A	5.008	KOV		Und.	12 Dor	107 A	11.15	F7V	3327	[1.71]	
40 Eri	166 B		DA2.9	233.2	0.573 ± 0.018	15 Per	107 B		M1.5V	23.90		
	166 C		M4.5V	6.888	0.204 ± 0.006	11 mi	356 A	11.23	G8V	241.0		
70 Onh	702 A	5.113	KOV	88.40	0.89 ± 0.02		356 B		M5V	7.180	[0.90]	
70 Opn	702 B		K4V	4.550	0.73 ± 0.01		4 A	11.52	K6V	516.0	$M / M = 0.006 \pm 0.026$	
oto Coc	34 A	5.923	G1V	471.3	1.0258 +0.007-0.0069		4 B		MOV	6.170	$101_{b}/101_{a} = 0.990 \pm 0.020$	
eta Cas	34 B		MOV	11.90	0.5487 ± 0.0056							
	338 A	6.334	MOV	933.0	0.69 ± 0.07							
	338 B		MOV	19.20	0.64 ± 0.07							

The Radius Inflation Problem

Becky Flores

Sample of Visual Doubles

Common	GJ	D (pc)	SpT	P (yrs)	Ma	Common	GJ	D (pc)	SpT	P (yrs)	Me
Name		- (1)	-	a ('')		Name		- (17		a ('')	
61 Cur	820 A	3.497	K5V	618.7	0.6771 + 0.0052 - 0.0051	kci Boo	566 A	6.754	G8V	152.0	0.954 + 0.073 - 0.050
orcyg	820 B		K7V	25.25	0.6289 + 0.0094 - 0.0092	KSI DOO	566 B		K5V	4.920	0.748 ± 0.011
	725 A	3.523	M4V	653.3	$M / M = 0 = 0 = 14 \pm 0.020$		250 A	8.747	K3V	Und.	Und.
	725 B		M4.5V	19.84	$W_b/W_a = 0.544 \pm 0.050$		250 B		M2V	[65.20]	
GX & GQ	15 A	3.562	M1V	1226			505 A	10.99	K1V	607.0	[0.93]
And	15 B		M3.5V	26.95	[0.59]		505 B		M1V	6.360	
	166 A	5.008	KOV		Und.	12 Dor	107 A	11.15	F7V	3327	[1.71]
40 Eri	166 B		DA2.9	233.2	0.573 ± 0.018	15 Per	107 B		M1.5V	23.90	
	166 C		M4.5V	6.888	0.204 ± 0.006	11 mi	356 A	11.23	G8V	241.0	[0 00]
70 Onh	702 A	5.113	KOV	88.40	0.89 ± 0.02		356 B		M5V	7.180	[0.90]
70 Opn	702 B		K4V	4.550	0.73 ± 0.01		4 A	11.52	K6V	516.0	$M / M = 0.000 \pm 0.020$
ata Cas	34 A	5.923	G1V	471.3	1.0258 +0.007-0.0069		4 B		MOV	MOV 6.170 $WI_b/WI_a = 0.99$	
eta Cas	34 B		MOV	11.90	0.5487 ± 0.0056						
	338 A	6.334	M0V	933.0	0.69 ± 0.07]					
	338 B		MOV	19.20	0.64 ± 0.07						

The Radius Inflation Problem

Becky Flores

<u>GJ 566 A</u>

Obs. 3 Nights (2 in 2022, 2024)

 $\theta_{LD} = 1.133 \pm 0.011 \text{ mas} (1\%)$

<u>GJ 566 A</u>

Obs. 3 Nights (2 in 2022, 2024)

 $\theta_{LD} = 1.133 \pm 0.011 \text{ mas} (1\%)$

Η

3

Nfiles

ldd

Κ

1.13 1.127 1.133

2

ALL

5

<u>GJ 566 A</u>

Obs. 3 Nights (2 in 2022, 2024)

 $\theta_{LD} = 1.133 \pm 0.011 \text{ mas} (1\%)$

-	Н	K	ALL
Nfiles	3	2	5
ldd	1.13	1.127	1.133
mean	1.133	1.124	1.129
sigma	0.013	0.008	0.011

<u>GJ 566 B</u>

Obs. 2 Nights (2023, 2024)

 $\theta_{LD} = 0.853 \pm 0.022 \text{ mas} (2.6\%)$

-	Н	K	ALL
Nfiles			
ldd	0.853	0.858	0.853

<u>GJ 566 B</u>

Obs. 2 Nights (2023, 2024)

 $\theta_{LD} = 0.853 \pm 0.022 \text{ mas} (2.6\%)$

-	Н	К	ALL
Nfiles	6	6	12
ldd	0.853	0.858	0.853
mean	0.865	0.855	0.860
sigma	0.009	0.030	0.022

GJ 566 AB

P: 152 yrs, ρ: 4.5" WDS

02/28/25

GJ 566	A	В
θ _{LD} (mas)	1.133 ± 0.011	0.853 ± 0.022
R _o	0.823 ± 0.008	0.619 ± 0.016

GJ 566	Α	B
θ _{LD} (mas)	1.133 ± 0.011	0.853 ± 0.022
R _o	0.823 ± 0.008	0.619 ± 0.016
$F_{bol} (x10^{-8} \text{ ergs/cm}^{-2} \text{ s}^{-1})$	38.768 ± 0.189	9.081 ± 0.108
T _{eff} (K)	5487 ± 27	4399 ± 58

L: Harada et al. 2024

$$F_{bol} = \frac{L}{4\pi d^2} \qquad T_{Eff} = \left(\frac{4F_{bol}}{\sigma\theta^2}\right)^{0.25}$$

GJ 566	Α	В
θ _{LD} (mas)	1.133 ± 0.011	0.853 ± 0.022
R_{\odot}	0.823 ± 0.008	0.619 ± 0.016
F_{bol} (x10 ⁻⁸ ergs/cm ⁻² s ⁻¹)	38.768 ± 0.189	9.081 ± 0.108
T _{eff} (K)	5487 ± 27	4399 ± 58
M _O	0.954+0.073-0.050	0.748 ± 0.011
Fe/H	-0.11 ± 0.007	-0.14 ± 0.012

L: Harada et al. 2024 Fe/H: <u>Hinkel et al. (2014)</u>

 $M_{\! \odot}\!\!:$ priv. comm. Mark Giovinazzi, Amherst College

$$F_{bol} = \frac{L}{4\pi d^2} \qquad T_{Eff} = \left(\frac{4F_{bol}}{\sigma\theta^2}\right)^{0.25}$$

Masses from Eggenberger et al. 2008

Solar Metallicity Model Comparisons

- Primaries: 0.89, 0.95 M_o
- Secondaries: 0.73, 0.748 M_o

Solar Metallicity Model Comparisons

- Primaries: 0.89, 0.95 M_o
- Secondaries: 0.73, 0.748 M_o

Solar Metallicity Model Comparisons

- Primaries: 0.89, 0.95 M_o
- Secondaries: 0.73, 0.748 M_o

GJ 166 C

Metal Poor Model Comparisons

Metal Poor Model Comparisons

Final Remarks

Goal: Provide a sample of nearby low mass stars with precise M&R to test stellar evolution models

> Hope to get dynamical masses for most of the sample

So far, see a trend with metallicity once bias of short-period EB's removed

- Solar metallicity models agree well with observations
- Metal poor stars are significantly more inflated and/or cooler compared to models, likely unrecognized if assumed solar metallicity

≻ Results published soon ~Summer

• Expand sample with Dual Star Interferometry?