
Overview of Modifications
to the

CHARA Array Delay Lines

Nils Turner

29 April 2025 / CHARA Winter/Spring Meeting, Nice

Overview

I The Problem

I Embedded Metrology Box
I OPLE “glitches”
I Future work

Overview

I The Problem
I Embedded Metrology Box

I OPLE “glitches”
I Future work

Overview

I The Problem
I Embedded Metrology Box
I OPLE “glitches”

I Future work

Overview

I The Problem
I Embedded Metrology Box
I OPLE “glitches”
I Future work

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house

I Issues assembling the tool chain
• Needed FPGA development suite and 2 additional “Intellectual Property”

modules
• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative

• Took 5 months to assemble

The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble

Embedded Metrology Box

I The most timing-critical component in the OPLE control system

I Every 200 µsec, the system reads the current cart positions, calculates the
target position, and generates the PZT velocity for the servo in use

I Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to
sequence the tasks to be done in the 200 µsec cycle

I There is a second servo cycle that runs every 1 msec which is used for fringe
tracking

Embedded Metrology Box

I The most timing-critical component in the OPLE control system
I Every 200 µsec, the system reads the current cart positions, calculates the

target position, and generates the PZT velocity for the servo in use

I Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to
sequence the tasks to be done in the 200 µsec cycle

I There is a second servo cycle that runs every 1 msec which is used for fringe
tracking

Embedded Metrology Box

I The most timing-critical component in the OPLE control system
I Every 200 µsec, the system reads the current cart positions, calculates the

target position, and generates the PZT velocity for the servo in use
I Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to

sequence the tasks to be done in the 200 µsec cycle

I There is a second servo cycle that runs every 1 msec which is used for fringe
tracking

Embedded Metrology Box

I The most timing-critical component in the OPLE control system
I Every 200 µsec, the system reads the current cart positions, calculates the

target position, and generates the PZT velocity for the servo in use
I Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to

sequence the tasks to be done in the 200 µsec cycle
I There is a second servo cycle that runs every 1 msec which is used for fringe

tracking

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board

Embedded Metrology Box

Altera DE2-115

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board

I Features a Cyclone IV FPGA running at 100 MHz
I Costs about $800
I Custom add-on board to handle clock and metrology signals, PZT output

voltage, and front-panel display

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board
I Features a Cyclone IV FPGA running at 100 MHz

I Costs about $800
I Custom add-on board to handle clock and metrology signals, PZT output

voltage, and front-panel display

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board
I Features a Cyclone IV FPGA running at 100 MHz
I Costs about $800

I Custom add-on board to handle clock and metrology signals, PZT output
voltage, and front-panel display

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board
I Features a Cyclone IV FPGA running at 100 MHz
I Costs about $800
I Custom add-on board to handle clock and metrology signals, PZT output

voltage, and front-panel display

Embedded Metrology Box

Open Metrology Box

Embedded Metrology Box

I The heart of the system is the Altera DE2-115 FPGA development board
I Features a Cyclone IV FPGA running at 100 MHz
I Costs about $800
I Custom add-on board to handle clock and metrology signals, PZT output

voltage, and front-panel display

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor”

... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II

I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system

I Two modes:
• Production: FPGA configuration and Nios II code bundled into a firmware blob

which is loaded at power-up
• Debug: FPGA configuration and Nios II code loaded from a USB-connected

laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop

... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor” ... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments

Embedded Metrology Box

FPGA Programming Flow Chart

OPLE “glitches”

OPLE “glitches”

OPLE “glitches”

OPLE “glitches”

Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)

I Clock jitter is a fact of life
I Each interrupt that occurs at a 1 msec boundary is used to time tag the target

data point
I The target position is interpolated between the 1 msec boundaries to match

the 200 µsec telemetry cycle
I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios

II code reads the wrong time and calculates an incorrect target position

OPLE “glitches”

Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)
I Clock jitter is a fact of life

I Each interrupt that occurs at a 1 msec boundary is used to time tag the target
data point

I The target position is interpolated between the 1 msec boundaries to match
the 200 µsec telemetry cycle

I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios
II code reads the wrong time and calculates an incorrect target position

OPLE “glitches”

Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)
I Clock jitter is a fact of life
I Each interrupt that occurs at a 1 msec boundary is used to time tag the target

data point

I The target position is interpolated between the 1 msec boundaries to match
the 200 µsec telemetry cycle

I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios
II code reads the wrong time and calculates an incorrect target position

OPLE “glitches”

Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)
I Clock jitter is a fact of life
I Each interrupt that occurs at a 1 msec boundary is used to time tag the target

data point
I The target position is interpolated between the 1 msec boundaries to match

the 200 µsec telemetry cycle

I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios
II code reads the wrong time and calculates an incorrect target position

OPLE “glitches”

Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)
I Clock jitter is a fact of life
I Each interrupt that occurs at a 1 msec boundary is used to time tag the target

data point
I The target position is interpolated between the 1 msec boundaries to match

the 200 µsec telemetry cycle
I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios

II code reads the wrong time and calculates an incorrect target position

OPLE “glitches”

Brad Hines’ Assessment (continued)

I The legacy JPL OPLE system kept this time tag in a hardware register,
effectively freezing the time tag for the full 200 µsec cycle

I The fix was to create a variable which kept the same time tag for all
calculations throughout the 200 µsec cycle rather than asking for the clock
time

I The hypothesis is that the Nios II interrupt controller doesn’t do nested
interrupts correctly

OPLE “glitches”

Brad Hines’ Assessment (continued)

I The legacy JPL OPLE system kept this time tag in a hardware register,
effectively freezing the time tag for the full 200 µsec cycle

I The fix was to create a variable which kept the same time tag for all
calculations throughout the 200 µsec cycle rather than asking for the clock
time

I The hypothesis is that the Nios II interrupt controller doesn’t do nested
interrupts correctly

OPLE “glitches”

Brad Hines’ Assessment (continued)

I The legacy JPL OPLE system kept this time tag in a hardware register,
effectively freezing the time tag for the full 200 µsec cycle

I The fix was to create a variable which kept the same time tag for all
calculations throughout the 200 µsec cycle rather than asking for the clock
time

I The hypothesis is that the Nios II interrupt controller doesn’t do nested
interrupts correctly

Future work

I Laser “spikes”

• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night

Future work

I Laser “spikes”
• OPLE system fails to start correctly

• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm

• Sometimes happens during the night

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night

Future work

Future work

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics

• Current logic uses OPLE server to cycle power on cable puller power supplies
based on the direction of the cart – HUGE latencies, sometimes 10s of seconds

• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart

– HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds

• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate

• Plan to use a network-enabled motor controller
• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate
• Plan to use a network-enabled motor controller

• Logic still to be worked out

Future work

I Laser “spikes”
• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out

Thank You

