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The Problem

I Visible beam combiners were seeing reduced visibilities compared to data
taken with the JPL OPLE control

I Original contractor was unavailable; we had to diagnose and fix in-house
I Issues assembling the tool chain

• Needed FPGA development suite and 2 additional “Intellectual Property”
modules

• Software ran afoul of GSU’s “cyber-security” initiative
• Took 5 months to assemble
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Embedded Metrology Box

I The most timing-critical component in the OPLE control system

I Every 200 µsec, the system reads the current cart positions, calculates the
target position, and generates the PZT velocity for the servo in use

I Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to
sequence the tasks to be done in the 200 µsec cycle

I There is a second servo cycle that runs every 1 msec which is used for fringe
tracking
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Embedded Metrology Box

FPGA Architecture

I Cyclone IV FPGA configured to be a “soft processor”

... called Nios II
I Configured soft processor runs interrupt-driven code – no operating system
I Two modes:

• Production: FPGA configuration and Nios II code bundled into a firmware blob
which is loaded at power-up

• Debug: FPGA configuration and Nios II code loaded from a USB-connected
laptop ... the two code bases are handled by different development
environments
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FPGA Programming Flow Chart
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Brad Hines’ Assessment

I Internal clock ticks at 40 kHz (25 µsec per clock cycle)

I Clock jitter is a fact of life
I Each interrupt that occurs at a 1 msec boundary is used to time tag the target

data point
I The target position is interpolated between the 1 msec boundaries to match

the 200 µsec telemetry cycle
I If the clock happens to jitter more than 25 µsec for a particular cycle, the Nios

II code reads the wrong time and calculates an incorrect target position
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Brad Hines’ Assessment (continued)

I The legacy JPL OPLE system kept this time tag in a hardware register,
effectively freezing the time tag for the full 200 µsec cycle

I The fix was to create a variable which kept the same time tag for all
calculations throughout the 200 µsec cycle rather than asking for the clock
time

I The hypothesis is that the Nios II interrupt controller doesn’t do nested
interrupts correctly
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• OPLE system fails to start correctly
• OPLE cart error jumps from 20-ish nm to 400-ish nm
• Sometimes happens during the night
• Fix is to completely power cycle the affected delay line(s)

I Improved cable puller electronics
• Current logic uses OPLE server to cycle power on cable puller power supplies

based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
• Introduced springs to compensate
• Plan to use a network-enabled motor controller
• Logic still to be worked out
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