Overview of Modifications to the CHARA Array Delay Lines

Nils Turner

29 April 2025 / CHARA Winter/Spring Meeting, Nice

ISSP

Overview

1

Overview

► The Problem

Overview

- The Problem
- Embedded Metrology Box
- OPLE "glitches"

ISSP)

Overview

- The Problem
- Embedded Metrology Box
- OPLE "glitches"
- Future work

ISSP

 Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control

- Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control
- Original contractor was unavailable; we had to diagnose and fix in-house

- Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control
- Original contractor was unavailable; we had to diagnose and fix in-house
- Issues assembling the tool chain

- Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control
- Original contractor was unavailable; we had to diagnose and fix in-house
- Issues assembling the tool chain
 - Needed FPGA development suite and 2 additional "Intellectual Property" modules

- Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control
- Original contractor was unavailable; we had to diagnose and fix in-house
- Issues assembling the tool chain
 - Needed FPGA development suite and 2 additional "Intellectual Property" modules
 - Software ran afoul of GSU's "cyber-security" initiative

- Visible beam combiners were seeing reduced visibilities compared to data taken with the JPL OPLE control
- Original contractor was unavailable; we had to diagnose and fix in-house
- Issues assembling the tool chain
 - Needed FPGA development suite and 2 additional "Intellectual Property" modules
 - Software ran afoul of GSU's "cyber-security" initiative
 - Took 5 months to assemble

The most timing-critical component in the OPLE control system

- The most timing-critical component in the OPLE control system
- Every 200 µsec, the system reads the current cart positions, calculates the target position, and generates the PZT velocity for the servo in use

Embedded Metrology Box

- The most timing-critical component in the OPLE control system
- Every 200 µsec, the system reads the current cart positions, calculates the target position, and generates the PZT velocity for the servo in use
- Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to sequence the tasks to be done in the 200 µsec cycle

Embedded Metrology Box

- The most timing-critical component in the OPLE control system
- Every 200 µsec, the system reads the current cart positions, calculates the target position, and generates the PZT velocity for the servo in use
- Each metrology servo cycle is further divided by 5 (i.e., every 40 µsec) to sequence the tasks to be done in the 200 µsec cycle
- There is a second servo cycle that runs every 1 msec which is used for fringe tracking

Embedded Metrology Box

The heart of the system is the Altera DE2-115 FPGA development board

Embedded Metrology Box

The heart of the system is the Altera DE2-115 FPGA development board

- The heart of the system is the Altera DE2-115 FPGA development board
- Features a Cyclone IV FPGA running at 100 MHz

- The heart of the system is the Altera DE2-115 FPGA development board
- Features a Cyclone IV FPGA running at 100 MHz
- Costs about \$800

- The heart of the system is the Altera DE2-115 FPGA development board
- Features a Cyclone IV FPGA running at 100 MHz
- Costs about \$800
- Custom add-on board to handle clock and metrology signals, PZT output voltage, and front-panel display

- The heart of the system is the Altera DE2-115 FPGA development board
- Features a Cyclone IV FPGA running at 100 MHz
- Costs about \$800
- Custom add-on board to handle clock and metrology signals, PZT output voltage, and front-panel display

FPGA Architecture

Cyclone IV FPGA configured to be a "soft processor"

Embedded Metrology Box

- Cyclone IV FPGA configured to be a "soft processor" ... called Nios II
- Configured soft processor runs interrupt-driven code no operating system

Embedded Metrology Box

- Cyclone IV FPGA configured to be a "soft processor" ... called Nios II
- Configured soft processor runs interrupt-driven code no operating system
- Two modes:

Embedded Metrology Box

- Cyclone IV FPGA configured to be a "soft processor" ... called Nios II
- Configured soft processor runs interrupt-driven code no operating system
- Two modes:
 - Production: FPGA configuration and Nios II code bundled into a firmware blob which is loaded at power-up

Embedded Metrology Box

- Cyclone IV FPGA configured to be a "soft processor" ... called Nios II
- Configured soft processor runs interrupt-driven code no operating system
- Two modes:
 - Production: FPGA configuration and Nios II code bundled into a firmware blob which is loaded at power-up
 - Debug: FPGA configuration and Nios II code loaded from a USB-connected laptop

Embedded Metrology Box

- Cyclone IV FPGA configured to be a "soft processor" ... called Nios II
- Configured soft processor runs interrupt-driven code no operating system
- Two modes:
 - Production: FPGA configuration and Nios II code bundled into a firmware blob which is loaded at power-up
 - Debug: FPGA configuration and Nios II code loaded from a USB-connected laptop ... the two code bases are handled by different development environments

Embedded Metrology Box

CHARA Delay Lines

UNIVERSITY OF

EXETER

Georgia<u>State</u> University

CHARA Delay Lines

University

XETER

OPLE "glitches"

KYOTO SANGYO UNIVERSITY XETER

E

Internal clock ticks at 40 kHz (25 µsec per clock cycle)

CHARA Delay Lines

OPLE "glitches"

- Internal clock ticks at 40 kHz (25 µsec per clock cycle)
- Clock jitter is a fact of life

OPLE "glitches"

- Internal clock ticks at 40 kHz (25 µsec per clock cycle)
- Clock jitter is a fact of life

OPLE "glitches"

Each interrupt that occurs at a 1 msec boundary is used to time tag the target data point

- Internal clock ticks at 40 kHz (25 µsec per clock cycle)
- Clock jitter is a fact of life

OPLE "glitches"

- Each interrupt that occurs at a 1 msec boundary is used to time tag the target data point
- The target position is interpolated between the 1 msec boundaries to match the 200 µsec telemetry cycle

- Internal clock ticks at 40 kHz (25 µsec per clock cycle)
- Clock jitter is a fact of life

OPLE "glitches"

- Each interrupt that occurs at a 1 msec boundary is used to time tag the target data point
- The target position is interpolated between the 1 msec boundaries to match the 200 µsec telemetry cycle
- If the clock happens to jitter more than 25 μsec for a particular cycle, the Nios Il code reads the wrong time and calculates an incorrect target position

OPLE "glitches"

Brad Hines' Assessment (continued)

The legacy JPL OPLE system kept this time tag in a hardware register, effectively freezing the time tag for the full 200 µsec cycle

Brad Hines' Assessment (continued)

- The legacy JPL OPLE system kept this time tag in a hardware register, effectively freezing the time tag for the full 200 µsec cycle
- The fix was to create a variable which kept the same time tag for all calculations throughout the 200 µsec cycle rather than asking for the clock time

CHARA Delay Lines

OPLE "glitches"

Brad Hines' Assessment (continued)

- The legacy JPL OPLE system kept this time tag in a hardware register, effectively freezing the time tag for the full 200 µsec cycle
- The fix was to create a variable which kept the same time tag for all calculations throughout the 200 µsec cycle rather than asking for the clock time
- The hypothesis is that the Nios II interrupt controller doesn't do nested interrupts correctly

OPLE "glitches"

Future work

CHARA Delay Lines

• OPLE system fails to start correctly

ISSP

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night

The CHARA Science Meeting 2025

CHARA Delay Lines

The CHARA Science Meeting 2025

CHARA Delay Lines

NOIR

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics
 - Current logic uses OPLE server to cycle power on cable puller power supplies based on the direction of the cart

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics
 - Current logic uses OPLE server to cycle power on cable puller power supplies based on the direction of the cart – HUGE latencies, sometimes 10s of seconds

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics
 - Current logic uses OPLE server to cycle power on cable puller power supplies based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
 - Introduced springs to compensate

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics
 - Current logic uses OPLE server to cycle power on cable puller power supplies based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
 - Introduced springs to compensate
 - Plan to use a network-enabled motor controller

- OPLE system fails to start correctly
- OPLE cart error jumps from 20-ish nm to 400-ish nm
- Sometimes happens during the night
- Fix is to completely power cycle the affected delay line(s)
- Improved cable puller electronics
 - Current logic uses OPLE server to cycle power on cable puller power supplies based on the direction of the cart – HUGE latencies, sometimes 10s of seconds
 - Introduced springs to compensate
 - Plan to use a network-enabled motor controller
 - Logic still to be worked out

Tha

Thank You

The CHARA Science Meeting 2025

Australian National University KYOTO SANGYO UNIVERSITY XETER

E

