

Observation of asteroseismic lowmass stars with SPICA, MIRCX and MYSTIC

M. Vrard, D. Mourard, O. Creevey, S. Deheuvels and the ISSP team

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

The ISSP project 5-year ERC Advanced Grant 2020 (#101019653) project

<u>Aim :</u> completing and exploiting a large (1000) survey of homogeneous interferometric measurements for various scientific purposes: bring constraints on stars hosting exoplanets, seismic relations, SBCR measurements, activity, binaries,...

(see previous talks by D. Mourard, J. Jonàk and R. Ibañez-Bustos)

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Asteroseismology+interferometry science program (S02&S03) S02 : Main-Sequence (MS) S03 : Sub-Giants (SG) and Red Giants (RG)

Participants: Vrard M., Mourard D., Creevey O., Deheuvels S. and ISSP team

Scientific objectives:

-Calibrating the radius seismic scaling relation covering a range of masses and metallicities

-Model-independent masses using $\Delta v (\Delta v \sim \langle \rho \rangle)$ and interferometric radius.

-Using interferometric constraints on model to obtain more precise stellar ages

-Detailed analysis to obtain high-precision stellar parameters and test different physical ingredients in stellar models.

-Scaling relations are used to deduce stellar Radius (R) and Mass (M) with asteroseismic parameters

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2}$$

 $\Delta v \sim <\rho >$ v_{max} : frequency of maximum oscillation T_{eff} : effective temperature

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

-Scaling relations are used to deduce stellar Radius (R) and Mass (M) with asteroseismic parameters

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2} \quad \frac{\Delta \nu \sim <\rho>}{\nu_{max}} \text{: frequency of maximum oscillation}_{\text{max}} \text{: frequency of maximum oscillation}_{\text{reff}} \text{: effective temperature}$$

-Seismic scaling relations has shown great agreement with other methods to obtain stellar Radius (R) and Mass (M)

-However, observations show a clear breakdown of those relations in some cases (gaia R, dynamical R)

Observatoire

Ratio between asteroseismic R and fundamental R (obtained with T_{eff}

Luminosity L and gaia parallax) as a function of v_{max}

LESIA

(courtesy of Marc Pinsonneault) Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

GeorgiaSta

Departure From Scaling Relation

R = 183 Rsu

1.6

Log g = 3.05

R = 5.8 Rsun

100

-Scaling relations are used to deduce stellar Radius (R) and Mass (M) with asteroseismic parameters

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2} \begin{array}{c} \Delta \nu \sim <\rho > \\ \nu_{max} : \text{ frequency of maximum oscillation} \\ T_{eff} : \text{ effective temperature} \end{array}$$

-Seismic scaling relations has shown great agreement with other methods to obtain stellar Radius (R) and Mass (M)

-However, observations show a clear breakdown of those relations in some cases (gaia R, dynamical R)

Asteroseismic R as a function of dynamical R (with binaries) (Gaulme et al. 2016)

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

-Scaling relations are used to deduce stellar Radius (R) and Mass (M) with asteroseismic parameters

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2} \quad \frac{\Delta \nu \sim <\rho>}{\nu_{max}} \text{: frequency of maximum oscillation} \\ \mathsf{T}_{eff} \text{: effective temperature}$$

-Seismic scaling relations has shown great agreement with other methods to obtain stellar Radius (R) and Mass (M)

-However, observations show a clear breakdown of those relations in some cases (gaia R, dynamical R)

Need other reliable independent measurements

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

THE UNIVERSITY OF

Jniversitv

Observation of asteroseismic low-mass stars with CHARA

Asteroseismic R as a function of dynamical R (with binaries) (Gaulme et al. 2016)

Target list

List selection participants: Vrard M., Mourard D., Creevey O., Deheuvels S. and S02/S03 collaborators

-Comprising northern asteroseismic targets (*Kepler*, K2, TESS,...)+PLATO Input Catalog (PIC) targets.

-Notebook developed to crossmatch targets with several external catalogues (extinction, simbad, gaia, ...)

-Assuming 1% angular diameters => calculate σ_R Selection and priority (P0,P1) on $\sigma_R + V_{mag} > 8 + \delta > -30^{\circ}$ + $\theta > 0.2mas$ + coverage of HR diagram => 447 S03 (RG/SG) + 340 S02 (MS) targets 110 P0 targets (50 S02, 60 S03), 677 P1 targets

Stellar magnitude as a function of the T_{eff} of selected **S02** targets. Courtesy of Orlagh Creevey

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

Georg

CHARA Interferometric observations for S02/S03 ISSP stars

-MIRCX/MYSTIC: 15 stars (5 MS, 10 RG) observed between October 2023 and November 2024, 20 observations in total

-Exploitable data for all of those, except one MIRCX target without calibrator

-SPICA: 9 stars (5 MS, 4 RG) observed between August 2023 and November 2024, 17 observations in total

-Exploitable data for 7 stars (3 MS, 4 RG) but less reliability due to less stability in the fringes and lack of shortest bases

Stellar magnitude as a function of the T_{eff} for the observed stars with MIRCX/MYSTIC and SPICA

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

Georg

MIRCX/MYSTIC data analysis

Observatoire LESIA

THE UNIVERSITY OF SYDNEY

National Universitv

Observation of asteroseismic low-mass stars with CHARA

Georgia<u>Stat</u> Universit

KYOTO SANGYO

Observatoire LESIA

Observation of asteroseismic low-mass stars with CHARA

GeorgiaState University 11

ETER

Australian

University

National

THE UNIVERSITY OF

KYOTO SANGYO UNIVERSITY

Comparison SPICA and MIRCX/MYSTIC radius

-Interferometric radius computed with gaia parallaxes

-MIRCX/MYSTIC results very close (except HD185395)

Georgia<u>Stat</u> Universit

-SPICA/MIRCX and SPICA/MYSTIC have more differences, still coherent

Observatoire - LESIA

-Larger uncertainties on SPICA due to noisier visibilities

Jniversitv

THE UNIVERSITY OF

KYOTO SANGYO

Asteroseismic radius determination

-Computation of asteroseismic Radius (R) with the scaling relation:

$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{max}}{\nu_{max,\odot}}\right) \left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{1/2} \frac{\Delta \nu \sim <\rho>}{\nu_{max}}: \text{ frequency of maximum oscillation} \\ T_{eff}: \text{ effective temperature}$$

TESS satellite

-Origin of asteroseismic data (Δv , v_{max}): mainly K2 (Pope et al. 2019, Schoffield et al. 2019) and TESS missions (Hon et al., 2022)

MIRCX/MYSTIC radius

-Good agreement between interferometric data and asteroseismology

-3 groups of stars: main-sequence, around the clump and evolved targets

-Good agreement except for stars with K2 data

Georgia<u>Stat</u> Universit

=> descrepancies probably linked to the low resolution of asteroseismic data

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

THE UNIVERSITY OF

Jniversitv

Observatoire LESIA

MIRCX/MYSTIC radius

-Good agreement between interferometric data and asteroseismology

- -3 groups of stars: main-sequence, around the clump and evolved targets
- -Good agreement except for stars with K2 data => descrepancies probably linked to the low resolution of asteroseismic data
- -Only disagreement with good asteroseismic data: HD185395

Comparison between MIRCX Radius and asteroseismic Radius for **MS** targets

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

GeorgiaSta

THE UNIVERSITY OF

(R₀) 2.0 radius HD185395 1.5 asteroseismic 1.0 0.5 1.5 2.0 2.5 0.5 1.0 MIRCX Interferometric radius (R_{\odot})

Comparison between MYSTIC Radius and asteroseismic Radius for **MS** targets

GeorgiaState University Comparison between MIRCX Radius and asteroseismic Radius for **MS** targets

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

SPICA radius

-Results coherent with asteroseismic Radius

-However larger uncertainties than for MIRCX/MYSTIC radius, mainly around the clump for K2 data => descrepancies probably linked to the low resolution of asteroseismic data

-3 groups of stars: main-sequence, around the clump and evolved targets

-Needs MIRCX/MYSTIC data to strengthen some SPICA fit

SPICA Interferometric radius (R_o)

Comparison between SPICA Radius and asteroseismic Radius

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

THE UNIVERSITY OF

Conclusion

-15 stars observed with MIRCX/MYSTIC (5 MS, 10 RG), all exploitable, 20 observations in total

-9 stars observed with SPICA (5 MS, 4 RG), 7 exploitable observations

-Good agreement between MIRCX/MYSTIC and SPICA observations, noisier results on SPICA

-So far no discrepancies between interferometric and asteroseismic radius Exception for HD185395 who exhibit a different behavior as a function of wavelength

-Survey will continue in order to complete the sample of stars and confirm the first results

Observation of asteroseismic low-mass stars with CHARA

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Perspectives

-Several articles in preparation, including one on the scaling relations

-The data analysis is continuing with a thorough analysis of the asteroseismic data Objective: assess the potential for asteroseismology and interferometry to bring better stellar parameters determination (mass, age, ...)

Thank you for your attention

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

21

Mathieu Vrard, CHARA Science Meeting 2025, Nice, France, April 28th, 2025

Observation of asteroseismic low-mass stars with CHARA

22