Imaging Young Stellar Objects with Optical Interferometry and Normalizing Flows

Prof. Fabien Baron, Physics & Astronomy, Georgia State University

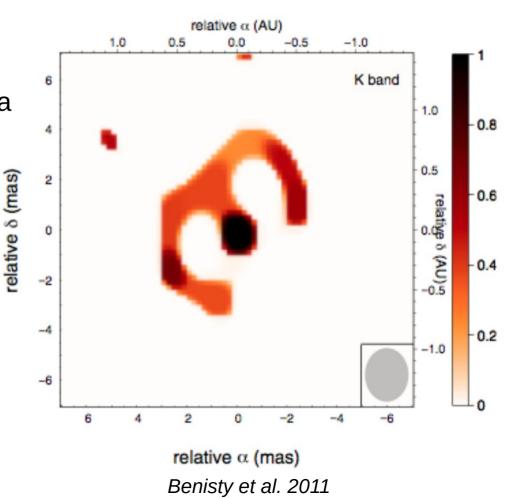
With thanks to:

GRA Rafael Orozco Seismic Laboratory for Imaging and Modeling, Georgia Institute of Technology

> Prof. Katherine L. Bouman & GRA Berthy Fang Computing & Mathematical Sciences Department, CalTech

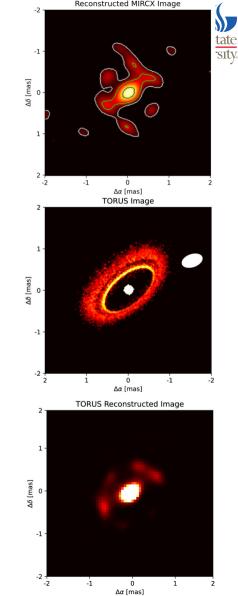
Imaging Disks around Young Stars

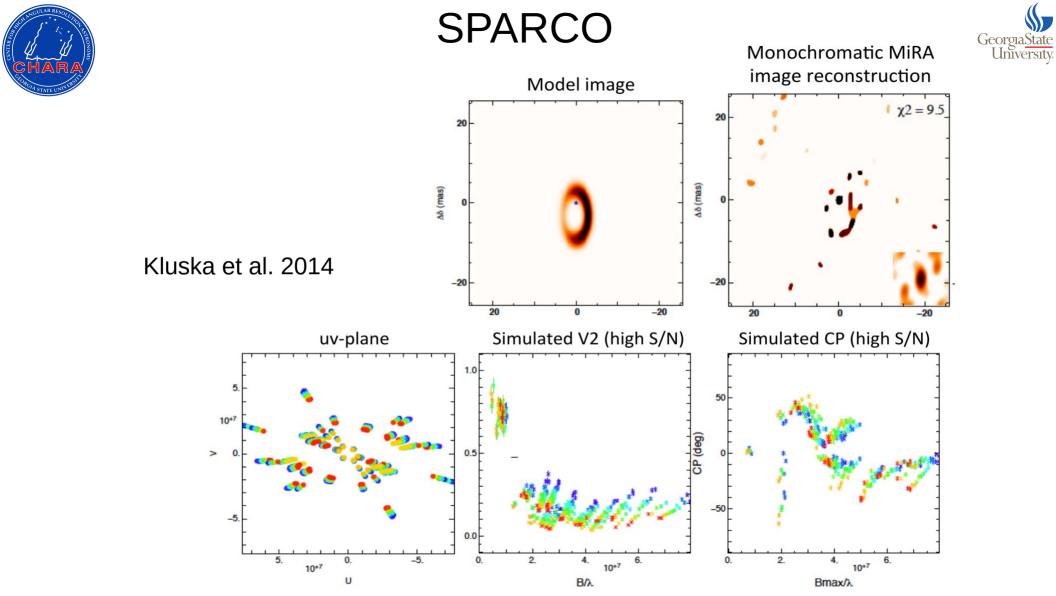
- Right figure = first interferometric image of a YSO (Benisty et al. 2011)
- Regularized via total variation
 - Over-regularized disc
 - Compact artifacts beyond the disk
 - Central star bleeding onto the disk

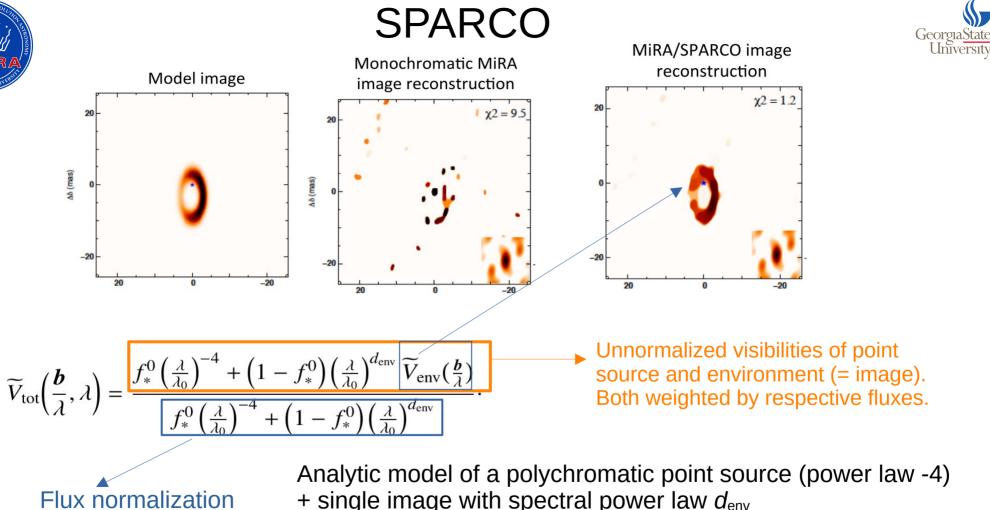


The YSO imaging problem

- Right: SU Aur from Labdon et al., 2023, *Imaging the warped dusty disk wind environment of SU Aurigae with MIRC-X.* Top: reconstructed image, middle TORUS model, bottom: best fit TORUS model.
- Dynamic environment on unknown timescales
- CHARA data repeatability issues?
- Polychromatic star and environment
- across visible, near IR, mid-IR + lines
- Theoretical models (e.g. TORUS) doesn't always mesh well with observations
- Issues linked to data calibration, systematic errors (→ implies automatically variational inference?)





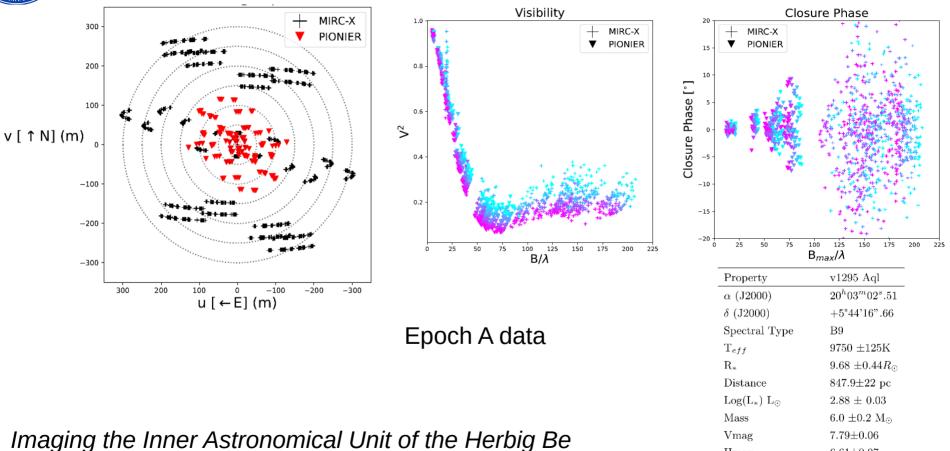


+ single image with spectral power law d_{env}

University.

Star HD 190073, Ibrahim et al. 2023

Ibrahim et al. 2023: data



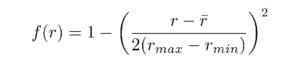
Hmag 6.61±0.07 **Table 1**. V1295 Aql Stellar properties from Guzmán-Díaz et al. (2021)

Ibrahim et al. 2023: modeling

Doughnui

Double Sigmoid

a Double Sigmoid



Disc almost face on

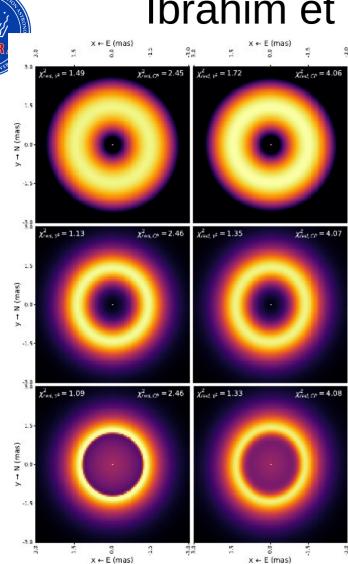
Georgia<u>State</u> University

$$f(r) = \frac{1}{1 + e^{\frac{-(r-R_{in})}{\sigma_{in}}}} * \frac{1}{1 + e^{\frac{(r-R_{out})}{\sigma_{out}}}}$$

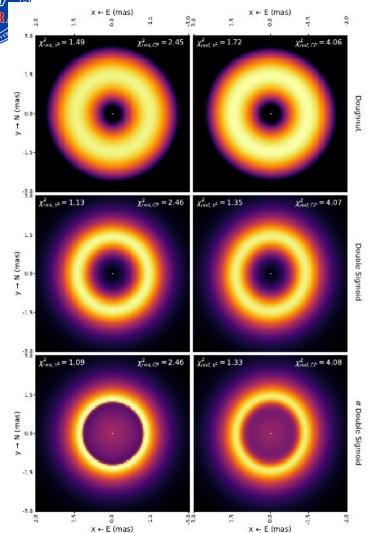
$$i \lesssim 20^{\circ}$$

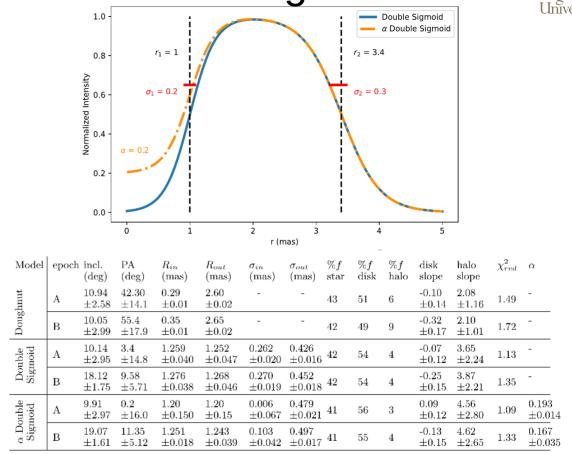
$$f(r) = \left(\alpha + \frac{1 - \alpha}{1 + e^{\frac{-(r - R_{in})}{\sigma_{in}}}}\right) * \frac{1}{1 + e^{\frac{(r - R_{out})}{\sigma_{out}}}}$$

Imaging the Inner Astronomical Unit of the Herbig Be Star HD 190073, Ibrahim et al. 2023

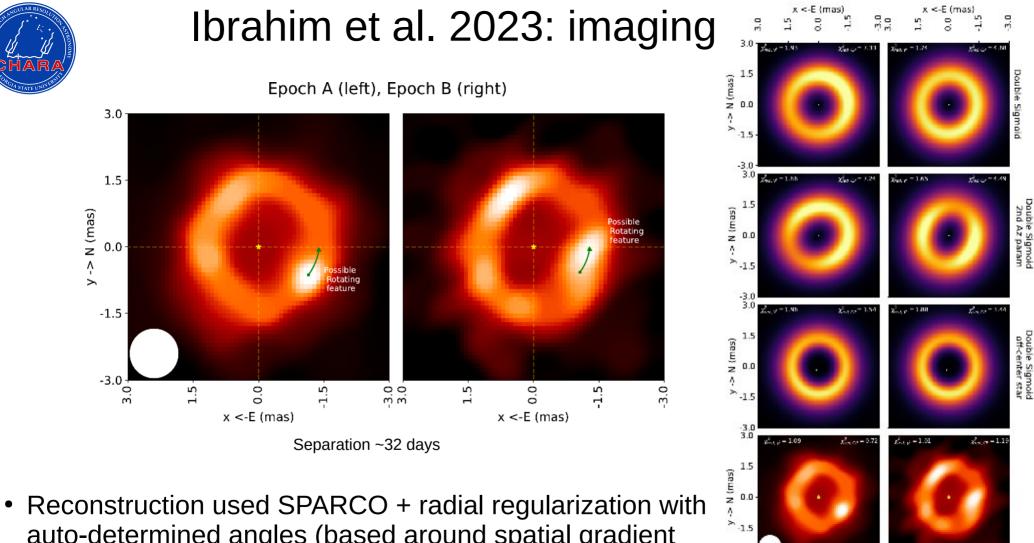


Ibrahim et al. 2023: modeling





Imaging the Inner Astronomical Unit of the Herbig Be Star HD 190073, Ibrahim et al. 2023



-3.0

mmi

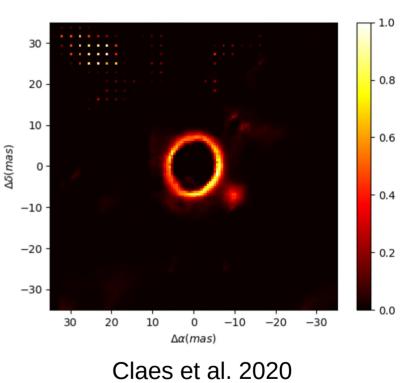
x <-E (mas)

x < -E (mas)

auto-determined angles (based around spatial gradient sparsity ideas)

Normalizing flow networks: overview

- There is such a thing as "the probability of x being a YSO"
- To learn it we need some sort of general probability density approximator
- Possibilities include Generative Adversarial Networks, Variational Autoencoders, Normalizing flows, Diffusion models, etc.
- E.g. Claes et al. 2020 used GAN
- Problems with GAN:
 - mode collapse/training issues
 - no exact probability calculation



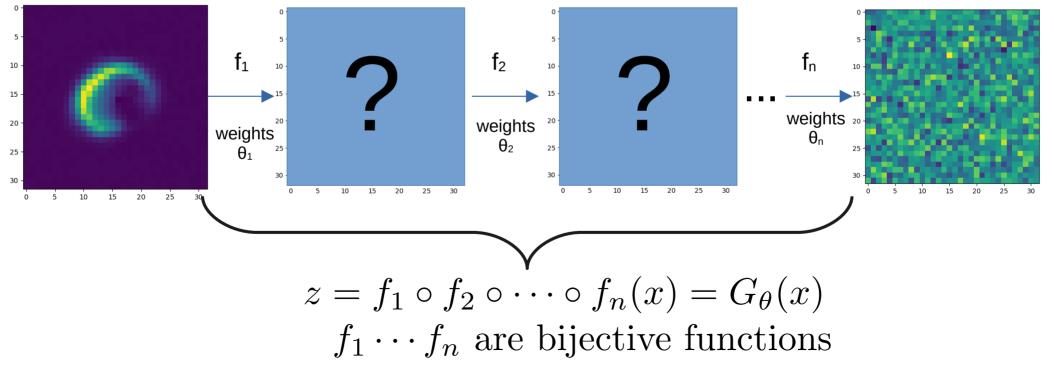
Normalizing flow networks: overview

- Normalizing flows are based on invertible transforms ("invertible networks") with multiple advantages over GANs
 - efficient and exact probability calculation
 - fast sampling from the distribution as a generator
 - no mode collapse during training
 - speed and memory requirement low enough to work from laptop

Normalizing flows = invertible networks

Image variables x

"Latent" variables z normally distributed

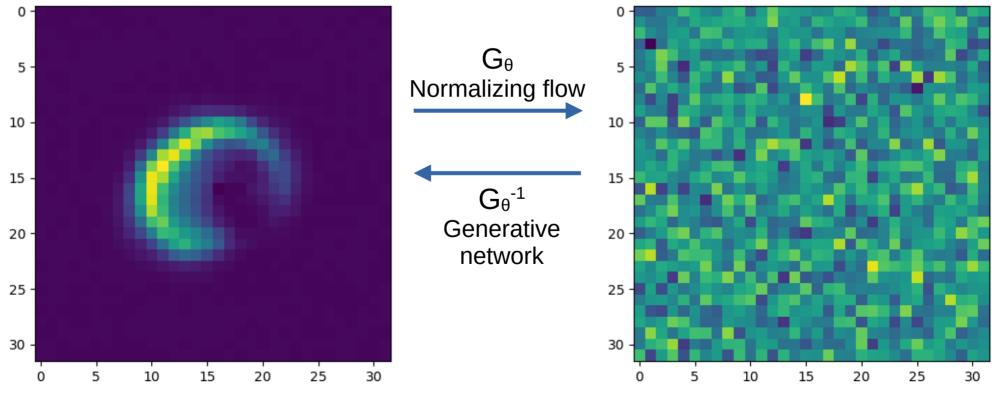


Normalizing flows = invertible networks

$$x = f_n^{-1} \circ \dots \circ f_2^{-1} \circ f_1^{-1}(z) = G_{\theta}^{-1}(z), z \sim \mathcal{N}(0, 1)$$

Image variables x

Latent variables z



The probability of being a YSO is...

$$\log p_{\rm YSO}(x) = \log p(z) - \log \det \left| \frac{dG_{\theta}(z)}{dz} \right|$$

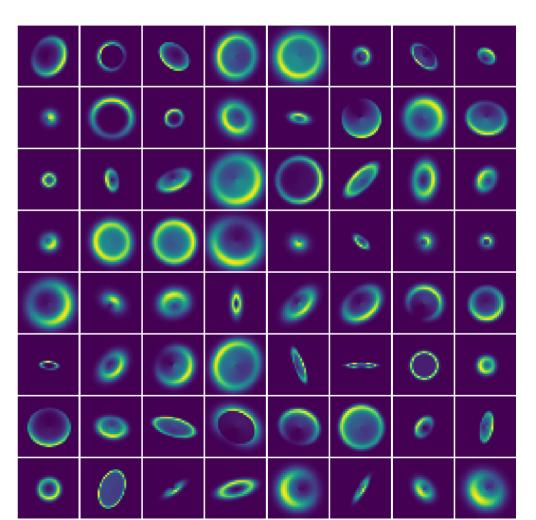
- The probability that x is a YSO is equal to that of z being Normal, minus the determinant of the network Jacobian
- This determinant can be calculated during the forward transform $(x \rightarrow z)$ or the inverse transform $(z \rightarrow x)$
- Fast normalizing network iff efficient computation of the determinant (e.g. Glow, RealNVP networks)
- All you need now is to train the network to Normalize YSO images

Training set 1

Analytic "double sigmoid" models with a range of inclinations and sizes

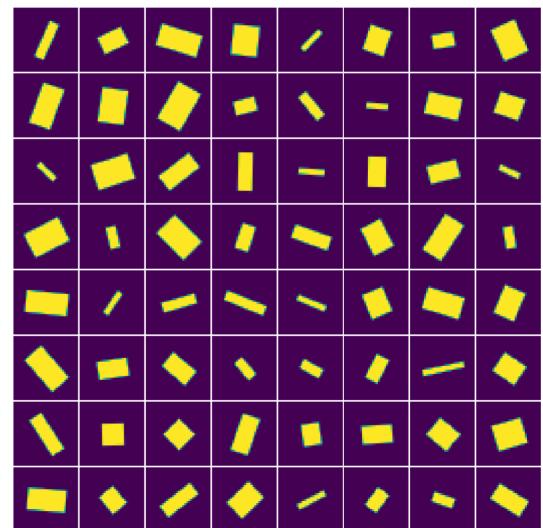
Filtered out images with low number of pixels

Here shown for the 32x32 pixel models

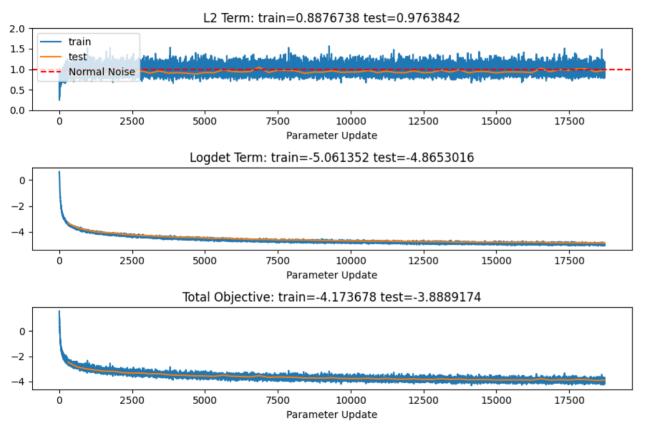


Training set 2

A super realistic model (this is what Fabien thinks YSO should look like?)



Training on YSO models



CPU training takes under 40 minutes with 32x32 pixel images, 50,000 training images

GeorgiaState

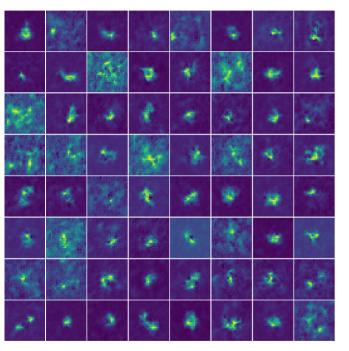
University

100 epochs, 128 mini-batches

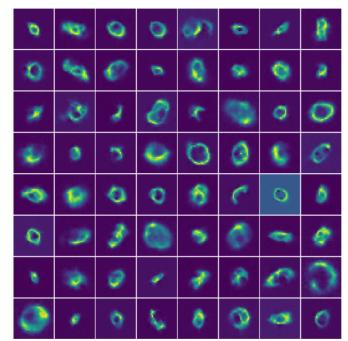
Glow model, 32 layers, trained with ADABelief (learning rate not optimized yet)

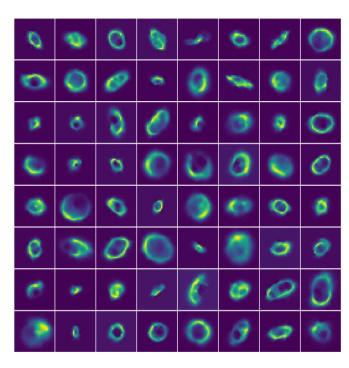
GPU implementation underway

YSO training

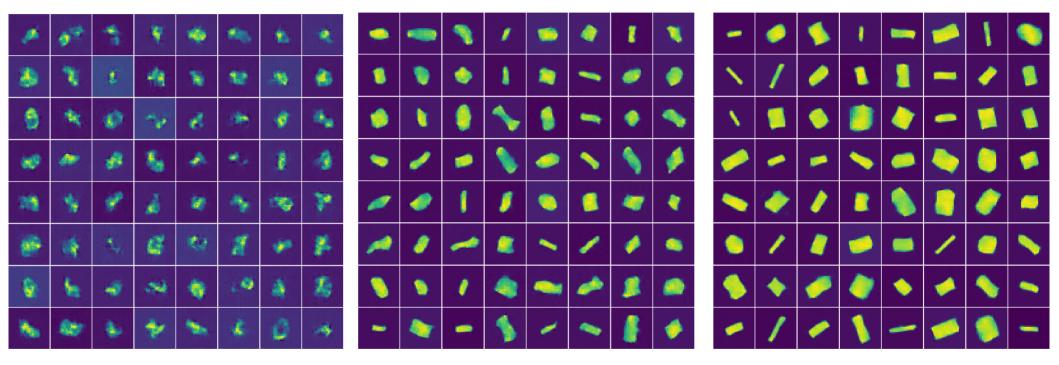


Epoch 10





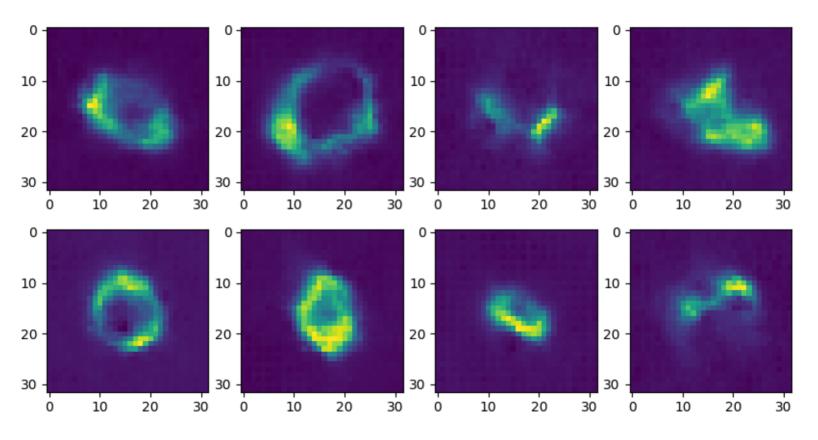
Rectangle training



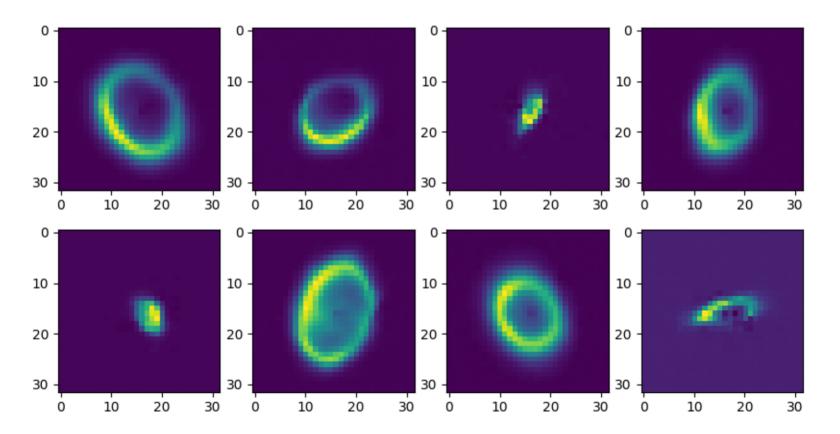
Epoch 10

Epoch 20

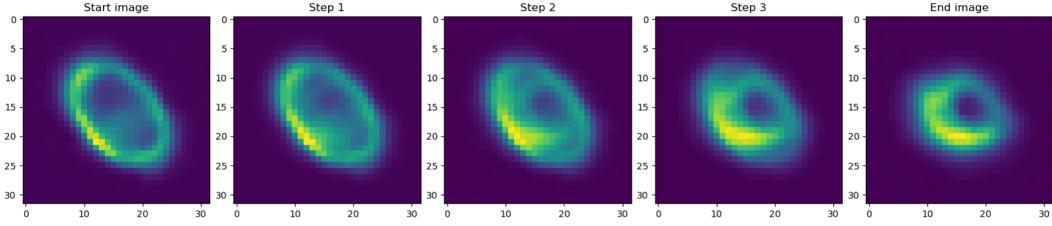
Trained network used as generator



Trained network used as generator



A fun example: YSO interpolation



Interpolation in latent space

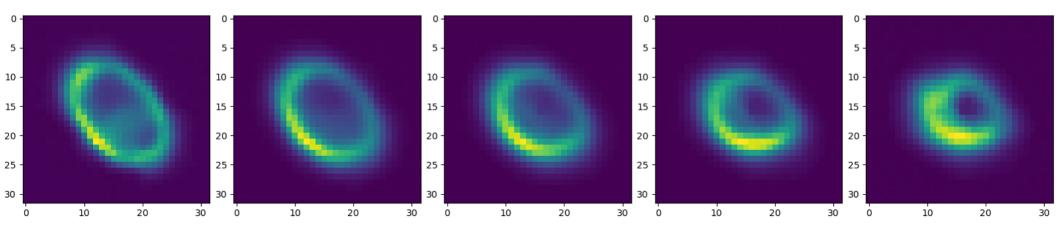


Image reconstruction with invertible networks

-1

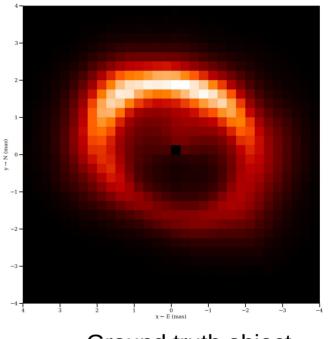
• Optimization in latent space

$$z_* = \operatorname{argmin} \mathcal{L}(G_{\theta}^{-1}(z)) + \frac{1}{2} ||z||^2$$

- Gradient of inverse network can be computed by propagating $\nabla_x \mathcal{L}$ backward
- Using gradient descent
- Positivity imposed by softplus() activation of the last layer

Tests on simulations

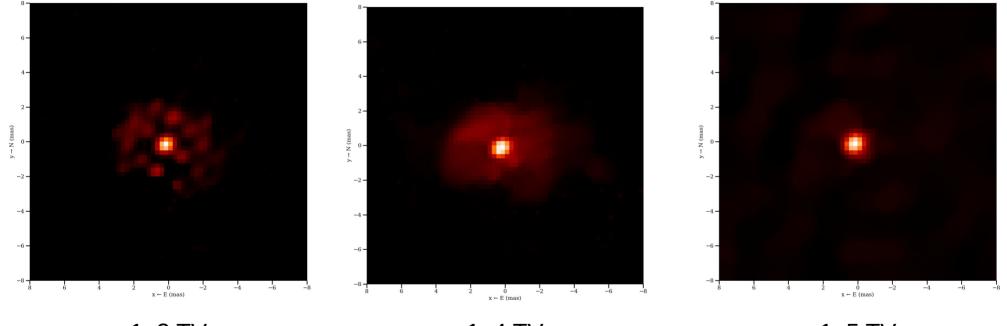




Ground truth object

uv coverage and noise errors copied from real v1295 Aql data

OITOOLS, no SPARCO, Total variation, fov 64x64

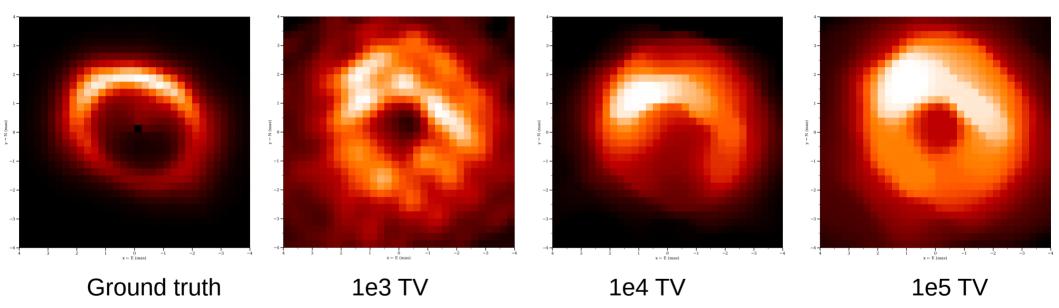


1e3 TV

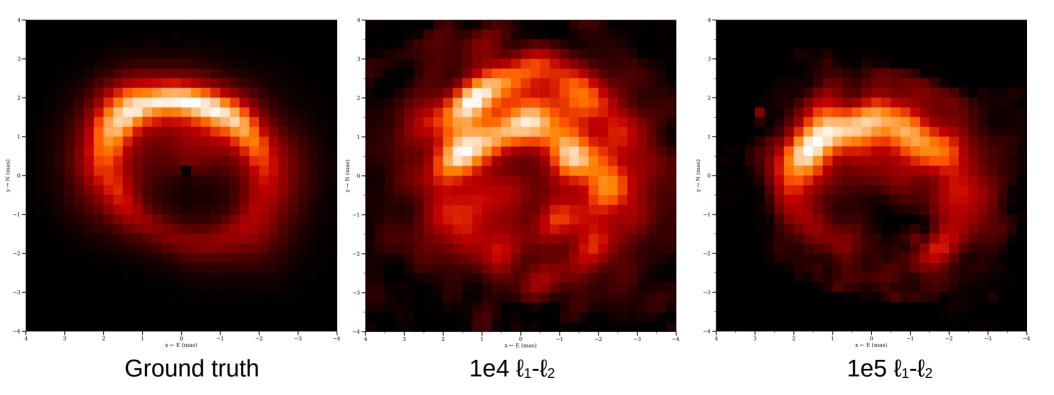
1e4 TV

1e5 TV

OITOOLS, SPARCO, Total variation, fov 32x32

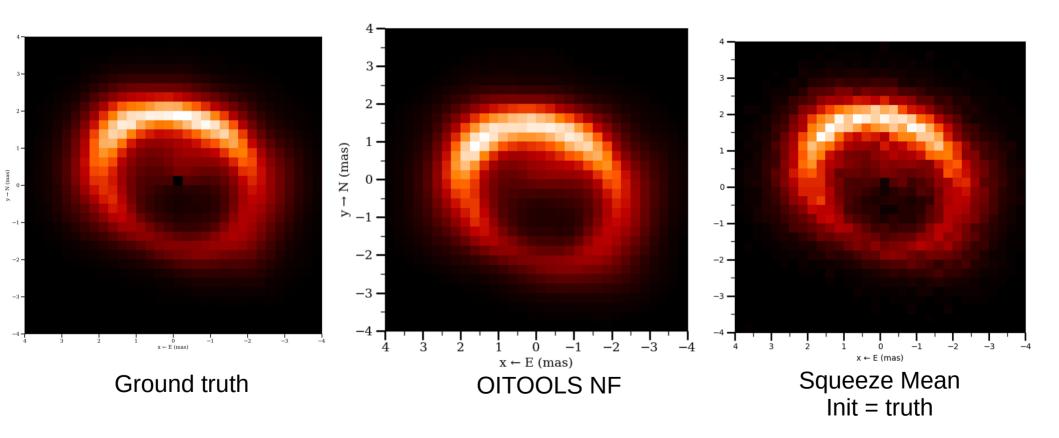


OITOOLS, with SPARCO, ℓ_1 - ℓ_2 , fov 32x32



 ℓ_1 - ℓ_2 regularization is an "edge-preserving" regularization with smooth transition from ℓ_1 to ℓ_2 penalty on spatial gradient.

OITOOLS MAP with Normalizing Flows



Tests on real data (v1295 Aql)

Possible Rotating feature

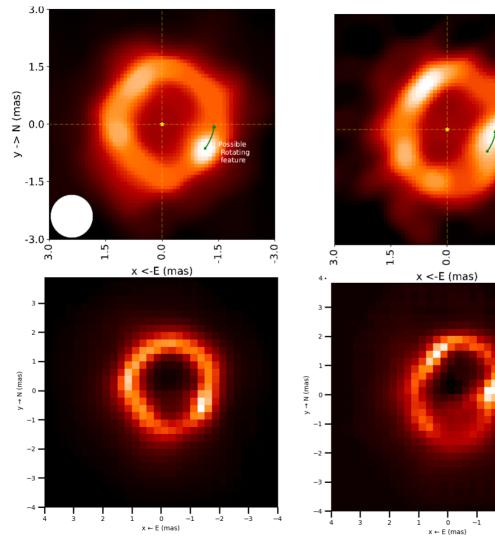
-1.5

-2

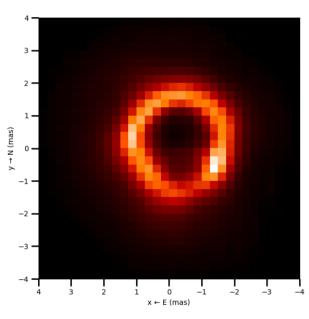
-3

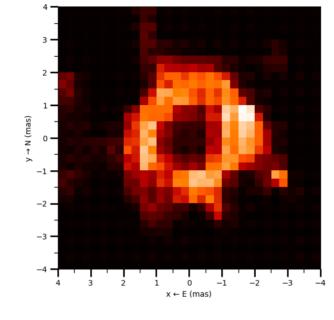
-4

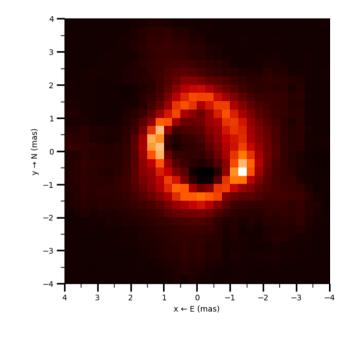
-3.0



Tests on real data (v1295 Aql) Influence of YSO training set







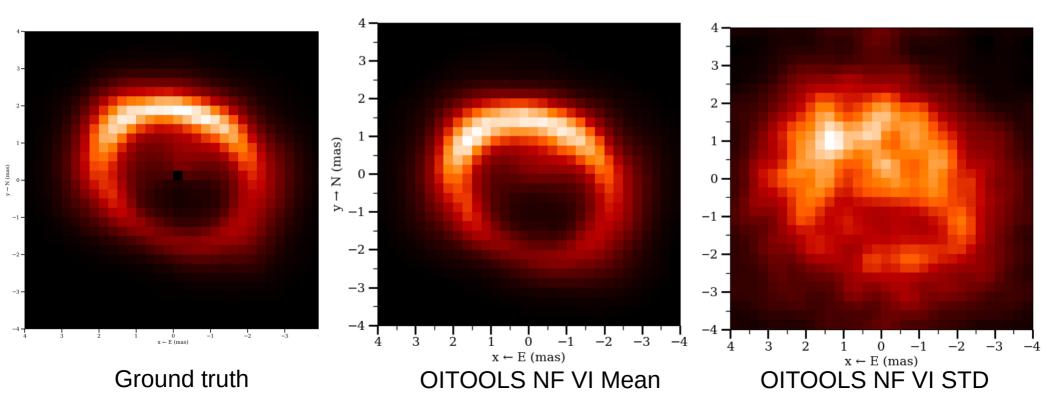
Double Sigmoid

Rectangles

Mixed

Variational inference with Normalizing Flows

• A normalizing flow network can be used to approximate the posterior probability distribution itself (chi2+regularization)



Work in progress / Conclusion

- Advantages:
 - Higher fidelity in reconstructions
 - Fast (<1 minute reconstruction)
 - No fiddling with regularization weights
- Issues:
 - Model dependent
 - Maybe expand the training set?
 - MAP can still stay stuck into local minima
 - but obvious/high chi2
 - Easy to get unstuck: add a small shift to the latent z
 - VI is slow
 - GPU work in progress

