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The CLASSIC/CLIMB Data Reduction: The Math

Theo ten Brummelaar

ABSTRACT: This technical report describes the methods used to extract closure phase from
CLIMB data and visibility amplitude from both the CLASSIC and CLIMB beam co mbiners. It
also includes a rather exhaustive description of the theory behind these methods. This higbegree
of detail is partly because previous publications of this theory contain errors, ad partly because
having done all this work it's nice to have it written up in full somewhere, and being slightly beyond
the thesis writing stage, this is only possible for me in a technical reportike this.

1. INTRODUCTION

At the time of writing this technical report, | know of "ve di®er ent data reduction codes
for CLASSIC data, and at least two for CLIMB data. However, th ey all use pretty much
the same methodology, and there is only one code set distriltad to outside observers. In
this document | will go over the theory of fringe production in a generalized N-way beam
combiner and from there describe methods that can be used toxéract visibility amplitudes
and closure phases.

The derivation of the fringe theory will be done in some detal, and | apologize for that, but

| have done this for two reasons. First, one rarely gets a chare to write these things out
in full and a technical report such as this is one of the few plaes where this can be done.
Second, there are inconsistencies in previous publicati@nof this kind of analysis, including
our original instrument paper (ten Brummelaar et. al. 2005)? and the paper on which that
was based (Benson et. al. 1998)The di®erences are minor, but worth clearing up.

The discussion of theory will be followed by a description ofthe software itself and how it
might best be used. Should you feel you already understand # theory | suggest that you
check that you understand Equations 22, 26, 27, 28 and 47 andhen skip straight to the
technical report on the data pipelines.

LCenter for High Angular Resolution Astronomy, Georgia State University , Atlanta GA 30303-3083
Tel: (404) 651-2932, FAX: (404) 651-1389, Anonymous ftp: chara.gsu.edu, WWW: http://chara. gsu.edu

2In the CHARA Instrument paper | used © for both frequency in the Fourier domain and for raw visibility
amplitude. This is confusing, and should have been xed before publication, but | only noticed this while
doing the analysis described in this technical report.

3As discussed below, there is a factor of two di®erence between theBenson formulation and ours. No doubt
most people get the software to work anyway. In our case | had made two di®erent factor of 2 errors in the
code, which compensated. This has been xed.
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2. THEORY

Here | will develop a general nomenclature and analysis of aarbitrary N-way beam com-
biner. We assume that N inputs beams are combined in some wayna all beams are, to
some extent at least, present in the output beam being consiered. We do not require the
same number of outputs as inputs as each output beam can be csigered in isolation as
an independent N-way combiner.

2.1. The Fringe Equation

Consider the output of an N-way beam combiner of any kind. We ca write the electric
“eld reaching the output of this beam combiner from each inputbeami as

Ei(t) = Ajcoskx; i kct+ A) 1)

where A; is the amplitude of beami, k = 2% _ is the wavelength, x; is the optical path
length in input beam i, t is the time, ¢ is the speed of light, andA is the phase of the
wavefront in input beam i. Note that this phase represents only the phase changes imped
within the beam combiner input.

The output of the beam combiner is then sensed using a cameraf @ome kind which will
measure the intensity, or time averaged modulus of the sigriawhich we can write as
A !
12T ?
= Ei(t) dt
T o o
A !
1 Z 70 ) 2
= = A;jcoskx; i kct+ A) dt
T o
X 1 27 .
= A2Z  cog(kxii kect+ A)dt+
=g T 0
i 1 1471 i i
2AiA| T coskx j kct+ Aj)coskxj i kct+ A) dt (2)
0

S(k)

i=1 j=i+l

where ideally T is an integer multiple of -, but it is suxcient that T A 5. Normally T is
also much smaller than the fringe period.

We can simplify this considerably by rstly considering the second part of Equation 3 and
expanding it as follows

147
= coskxi i kct+ A)coskx;j i ket+ Ay) dt
0
Zt
= % [coskx; + A)) cos(kct) + sin( kx; + A) sin(kct)] £
0

[coskx; + A)) cos(ket) + sin( kZXj + A)sin(ket)] dt

= cos(kx; + A)coskx; + Aj)% ! co<(kct) dt +
0
Z
coskx; + A)sin(kxj + A )% sin(kct) cos(kct) dt +
0
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VA
. ‘ 10T .
sin(kx; + Aj) cos(kx; + Aj)? cos(kct) sin(kct) dt +
; S 17T
coskx; + A) cos(kx; + A,-)? sin?(kct) dt: (3)
0
Now, given the standard integrals
Z Z
1 2Ya _ 1 2Y4 " _ 1
T o coszde—z—l/40 sin xdx-i (4)
and 12 |
i o cosxsinx dx =0: (5)

we see that the cross terms in Equation 4 cancel to zero whilehe cog and sir? integrals
both are replaced by% and we are left with

Z7

coskx; i kct+ A)coskx; i kct+ A) dt
0

[coskxi + Aj)coskxj + Ay) +sin( kxi + A)sin(kx; + A)]
cosk(xii xj)+(A i A): (6)

NP NP o

We can now write the detected signal as

LN M1 o
S(k) = > AZ + AjAj cosk(xii xj)+ (A A)l: (7)
i=1 i=1 j=i+l

If we use the signal intensityl; = A? this becomes

1N D (R R p— i )
Sky= 5 li+ lilj cosk(xii X))+ (A i A)l: (8)
i=1 i=1 j=i+1
Since visibility amplitudes are normalized, that is they have & value between zero and one,
the next step is to divide this signal by the mean intensity% N, 1 resulting in

i1 o
N(k)=1+ Tj cosk(xii xj)+(Ai Al 9)

i=1 j=i+l

where we have introduced the transfer function

Zann
Tj = Pt 'IJ_: (10)
i=1 'l

The Cittert-Zernike theory (See Born and Wolf for a derivation, or the original papers van

Cittert (1934) and Zernike (1938)) tells us that the amplitu de and phase of each fringe
function from each baseline has an amplitudeV; and a phase @ which are directly related
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to the Fourier Transform of the intensity pattern on the sky and it is these things that we
are ultimately interested in measuring. We therefore explcitly include these terms in the
fringe equation and write

i 1o o
N(k)=1+ Tij Vij cosk(xii xj)+(Ai A)+OIj]: (11)
i=1 j=i+l

As we shall see later, we will ultimately want to calculate a dosure phase around a triangle of
baselines, rather than the phase of a single baseline as thatér is washed out by atmospheric
noise.

Equation 11 is the fringe equation for an N-way beam combiner dr a single wavelength.
We now need to apply this equation to our actual beam combines by introducing a nite
bandwidth and the temporal fringe encoding used in CLIMB and CLASSIC.

First, we will assume that the delay lines have removed all ofical path length di®erences
(OPD) between the N beams and that the only OPDs are introducel by the so called “dither
mirrors' that each move at a constant velocity v; and may be di®erent for each beam. So
we say that

Xii Xj=(viiVv)t=yv;t (12)
It is also convenient to use the wave number
1 k
Y= — = —:*
7 ’ o (13)
When we substitute Equations 12 and 13 into the fringe Equatdon 11 we get
i 1 X i i
N(¥H=1+ Tj Vij cos[Za¥ayt+ (A i A)+OIj]: (14)
i=1 j=i+l

The nal step is to introduce a nite bandwidth and integrate th e fringe equation across
this bandwidth. Let us for the sake of simplicity assume that the bandwidth is square,
centered on¥g and with a width of ¢ 3 We then have

1 Z3’/@+¢2l
N(:¢%) = — N (%) d¥
¢'?/4 3/01%3/4 1
1Z%+¢T%@ XX 3 A - A it 1A d3
- 2 Yoi L2 1+. o TijVij COS[Z/“/‘Wt"'(AiI Aj)+©|j] d¥
) i=1 j=i+1
LR Z ypu £ o
= It ey TV, cosi@a¥yt+ (A A)+Ol]d% (15)
i=1 j=i+1 i 5

Note that we have assumed that the visibility Vj; and transfer function T; are constant
within the small bandwidth of our optical Tter.

Let's consider the integral part of Equation 16 which becoms easier if we make the substi-
tution ~ = %j ¥ and we get

VAR S

| = * cos[M¥ayt + (A i A)+©ij]d%

3 C %
Yoi
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Z e
= ® cos[MFp+ Yvijt+ (A A)+Oi]d

. Y
I

2
1 ; - iR vt 8
= 21/4\“[s.|n(21/z(?/{;>+ Wi t+ (A Aj)+©”)]i@'
1 . _
= m[sm(w Yayt+ C)j sin(i ¥& %yt + C)] (16)
f

where
C=21/43161Vijt+(Aii Aj)+©ij2 a7

Now, it also simple to show that

sin(a+ b)j sin(aj b sin( a) cos(b) + sin( b) cos@) j sin(a) cos(b) + sin( b) cos(a)

2sin(b) cos(a) (18)

and in our casea = C and b= ¥& %y t, so combining Equations 16, 17, 17 and 19 we arrive
at the nal fringe equation for an N-way beam combiner with a "nit e square bandpass

W 1 W . B
N(¥%;¢3%=1+ Tij Vij sinc[/& 3y tJcos [2u3vit+ (A i A)+Oij]:  (19)
i=1 j=i+1

This is the result we're all used to seeing: oscillating terns for the fringes from each baseline,
whose fringe period is a function of the central wavelength bthe optical Tter, modulated
by an envelope function, in this case a sinc function, whoseize is inversely proportional
to the width of the optical Tter. In this analysis we have assumed that the optical Tter is
square, or a ‘top hat' function, whose Fourier Transform is asinc function, and as we shall
see, this works in general. That is, the fringe envelope furtmon is the Fourier transform of
the “Tter function. This is the basis for Fourier Transform Sp ectroscopy, but that is beyond
the realm of this technical report.

Everything that now follows is now based on Equation 19, the gneralized fringe equation
for an N-way beam combiner.

2.2. Application of the Fringe Equation to CLASSIC

CLASSIC is a simple open air aperture plane beam combinér consisting of one beam
combiner and one dispersion compensation plate, hence theame. The optical layout
of CLASSIC is given in Figure 1. For simplicity, let's assume that the visibility phase
©12 = 0:0. Since the atmospherically induce piston noise will overlvelm that phase anyway
this is probably the only assumption one can usefully make. W will also assume that
the delay lines are adjusted such that there is no phase di®eanee between the beams at
the point they are combined on the beam splitter and for the time being we will ignore
atmospheric and detector noise.

“Note that | am avoiding the term \Michelson beam combiner", a terminology t  hat is misleading - Michelson's
stellar interferometer created fringes in the image plane, not the aperture plane, and was in fact a \Fizeau
beam combiner", another misleading term.
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Beam SplitteM\)\x T\

Output 2 X\/ \ \ Input B

-

v, Compensato

\ Input A

Dither Mirror
FIGURE 1. Schematic of the optical layout of the CLASSIC beam combiner.

In this simple case of a two beam combiner the transfer functin in Equation 10 reduces to

p
2 Talg

Tag = it lg (20)
which is exactly the same as the transfer function given in Bason et al. (1995) and all the
other papers that cite it except that we now use A and B for the two input beams instead
of 1 and 2. As we shall see below this helps to remove some cosion between input and
output beams. If the two beams have equal intensity, that islp = Ig, we ndthat Tag =1
as one would expect.

Next, we need to establish the values ofA; and A,. First, note that these phase shifts
will have di®erent values for each of the output beams. We will therefore, now use the
notation A to represent the phase of input beami in output k. Now, if we consider output
1 rst, input beam A is transmitted through the beam splitter a nd so will undergo no phase
change, soAja = 0, while input beam B is re°ected and will therefore undergo a¥:phase
change soAg = Y Similar reasoning gives usfoa = Yand A,z = 0. This results in a 2%
phase di®erence between the two outputs, giving a bright or d& fringe on both sides of the
beam splitter at the same time, and this is a violation of the mnservation of energy. This
bothered me for some time, and | even went so far as to go througthis line of reasoning
with several colleges who where all as confused as | was.

It turns out it is a common mistake (for students!), as discussed by Zetie et al (2000) -
the re°ection of input A inside the beam splitter is on a glass-ar interface, that is a high
refractive index to a low refractive index interface, and this beam does not undergo thé/
phase change we normally associate with re°ections on mirr@; which have a low to high
refractive index interface. With this cleared up we can see hat

Aip =0; Ajg = Ya; Aa =0; and Ayg =0: (21)

We now have a%iphase di®erence between the two outputs giving us the brightringe on
one side and a dark fringe on the other, as we know it should beor only then is energy
conserved.

We can therefore write the fringe equation for outputi of CLASSIC as
Ni(%;¢3%=1+(; 1)i Tias Vas Sinc[/& %vicos [2a3vt + © ag |- (22)

where we include an extra subscript for the transfer function Tiag to acknowledge the fact

that, due to imperfections and misalignment in the optics, the two output pixels will not
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FIGURE 2. Example of a noiseless fringe signal for the CLASSIC beam combiner. The fringe

envelope is shown with a dotted line. Note that the other output would have an idenical envelope
function but with the central fringe at O instead of 2.

necessarily have the same amount of light from each input bea and may therefore have
di®erent transfer functions.

As for Equation 20, this fringe equation for CLASSIC, Equation 22, is the same as that
given in both Benson et al. (1995) and ten Brummelaar et al. (205), although in the later
there is an error in the notation for the visibility amplitud €. An example of a noiseless
normalized fringe signal for output 1 for the K' band is given in Figure 2.

2.3. Application of the Fringe Equation to CLIMB

CLIMB is an extension of CLASSIC to three beams, thus the nameCLassic Interferometry
with Multiple Baselines. The optical layout of CLIMB is give n in Figure 3. Here, one of
the output beams of the CLASSIC layout is combined with a third beam. Note that his
means, even in a perfect world, while each output will have tle same total amount of light,
they will not have the same amount of light from each input. As for CLASSIC, we need to
include an extra subscript to the transfer function to indicate which output we are using,
so for output i and input beamsj and k we write

2p Iij |ik

Ti‘ -
jk
lia + 1ig + lic

(23)

If we assume perfect optics, the transfer functions for the liree output pixels for each beam
pair, or baseline, are given in Table 1.

Now, in order to ensure that each baseline fringe pattern has unique fringe frequency, the

5The aforesaid multiple use of the symbol °©
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FIGURE 3. (Top) Schematic of the optical layout of the CLIMB beam combiner. (Bottom)

Picture (Left) and schematic (right) of the CLIMB/CLASSIC optics with opt ical paths drawn.
One CLIMB beam combiner is at the bottom (red beams) while a second CLIMB, in this instance
con gured for two beam CLASSIC operation, is at the top (green beams).

dither mirror velocities are set such that

vi=Vv; and vp = j 2v (24)
where v is the desired lowest fringe frequency. In order to keep thigs clear, we have not
explicitly included the fact that the beam angle of re°ection is 15 degrees and written these
equations as if the re°ection was 0 degrees. Furthermore, netthat the mirrors move in

opposite directions and that the range of motion of the secod dither mirror is half that of
the rst. The result is that

Vag =3V, Vgc = j 2v; and vca =i V: (25)

TABLE 1. CLIMB transfer functions for perfect optics.
Output  Tas Tec  Tca

1 0 1 0

1 1 1
A B
8 m
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The sign of vca is negative because when we come to measure closure phase eedto
have a closed triangle andvca = j Vac -

The last thing we need is the phase change for each beam on eaolitput, which can be
calculated in the same way as for CLASSIC. These phase changase set out in Table 2.

TABLE 2. CLIMB phases for perfect optics. Note that beam A does not reach output 1 and so
no phase is given.

Output Ax  As A

1 - 0 Ya
2 0 Ya Ya
3 0 0 0

We write the three outputs of the CLIMB beam combiner as
N1(3%;¢3 =1 | Tigc Vec Sinc[Z/4 ¥avicos [443vti ©Ogc] (26)
Ng(?/@; ¢ % =1 j Toag Vag SINC [g‘/ﬂ: ?/4Vﬂ Cos [6/43:@\/11 +©ap ]
+ Tosc Vec sinc[2Z/4 ¥avicos[4/43%vt i Opc]
i Toca Vca sinc[/8 vl cos [243vt i Ocal (27)

N3(¥p;¢ %) =1

+

Taag Vag Sinc[3/4 3avi cos [6/436vt + © ag |
Tagc Vac Sinc[2/4 ¥avicos[4/43%vt i Opc
+ Tsca Vca sinc /8 ¥avicos [243vt i ©cal (28)

Output 1 only receives light from inputs B and C and so has a frnge pattern exactly like
that of Output 1 of CLASSIC, so it is not surprising that Equat ions 26 and 22 are very
much alike. Outputs 2 and 3 receive light from all three input beams and so contain a fringe
pattern from each baseline, each with a unique frequency. Arexample of a noise free signal
with a visibility of 1 on all baselines and perfect optics fran CLIMB output 3 is given in
Figure 4. Note that the phase of inputs B and C ©s¢ is negative in each case because of
the de nition of the velocities above. Similarly, the phase €4 is also negative because, as
mentioned above, Q¢ = | ©ca and when it comes time to form a proper close phase we
will be interested in ©ca.

Note that Equations 22, 26, 27, and 28 do not explicitly include phase noise due to the
atmosphere. We need to also keep in mind that the visibility anplitude will vary due to
atmospheric seeing.

2.4. Extracting Visibility Amplitude from the Data

The point of all of this is to measure the visibility amplitud e and phase. We will deal with
phase in sub-section 2.5, here we will only consider visibtif amplitude. To keep things
simple, and general, we will assume that the fringes from edcbaseline can be separated.
In the case of CLASSIC this is of course trivial, in the case ofCLIMB it requires bandpass
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FIGURE 4. Example of noiseless fringe signals for the CLIMB beam combiner. The top three
plots show the fringe signal from the A-B (top), B-C and C-A baselines plotted aganst the total
amount of path introduced by the dither mirrors. The plot at the bottom shows t he combination
seen at output 3 against the position of Dither 1. The envelope is plotted as a dted line in all four
plots.

‘Tters at the appropriate frequencies. So in the remainder ofthis analysis will we will use
the simpli ed fringe equation

f(t) = V sinc /& %vi cos [2a3vt + O] : (29)

In real data there will be sources of noise, like atmospheriavavefront distortions, atmo-
spheric piston, photon noise, and read-out noise from the casra, and so even in high
signal to noise data the fringe pattern will be hard to detectand measure. A 't of Equation
29 to the data will not work very well in low signal to noise situations.

There have been two approaches used to get around this probie - one in the time domain
and one in the frequency domain - and | will deal with these searately.

2.4.1. Time Domain Amplitude Estimation

In high signal to noise data it is possible to normalize and Tter the signal and produce
something that can be compared directly to Equation 29. If wedivide the raw signal by a
low pass ltered version of the scan we remove the scintillatbn noise, and at the same time
normalize the data. We than pass this through a bandpass Ttercentered on the expected
fringe frequency which leaves us with a relatively clean fmige signal. An example of this
process is shown in Figure 5. We now have something that lookgery much like Figure 2.
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FIGURE 5. A fringe scan from CLASSIC is shown above in its raw signal form (top) vith the
low-pass Ttered version superimposed prior to normalization. The bottom fame shows the same
scan, with an o®set of 0.2 for clarity, after normalization and, nally, after implementation of the
band-pass lter.

There are, of course, nhumerous di®erences between the thetical perfect signal and the real
signal. Most notably, the lack of clear side lobes and the agymetry of the fringe envelope.
The former is simple a result of a lack of signal to noise - in v high signal to noise data the
side lobes are quite clear. The later is primarily due to di®egntial dispersion. The example
data in Figure 5 where taken at a time when the Longitudinal Dispersion Correctors where
not being used, and | will not cover in dispersion in any more @tail in this technical report.

If you're interested in dispersion a®ects see Dave Berger'sigsis, or ten Brummelaar (1995).

The simplest way to extract a visibility amplitude estimate from the Ttered fringe signal
is to simple look for the maximum absolute amplitude. This isvery fast, but has very little
else to recommend it. For example, the digitized sampling othe data may not fall exactly
on the fringe peak and so will almost always underestimate tk fringe amplitude. Originally
this was the way the real-time software estimate for visibilty amplitude was calculated, but
it is seldom used now. In the reduction pipeline this is refered to as the V_.CMB visibility
estimate.

A slightly better method is to nd the peak of the fringe envelope, but rst one needs
to calculate that envelope. This can be done by demodulatinghe signal using a Hilbert
Transform®:

1. Fourier transform the data.
2. Set the amplitude of all negative frequencies to zero.
3. Inverse transform the data.

4. Calculate the modulus of the result.

The nal modulus is the fringe envelope, and this is the way thefringe envelopes in Figures 5
and 4 where calculated. The maximum amplitude of the envelop function is an estimate of

This is the same way AM radio works
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the fringe amplitude, and further more, it's position gives you a group delay measurement.
Since you are Ttering the data anyway, it is highly likely tha t you are already using Fourier
transforms and so this method is still very fast, and it is mud less susceptible to digitization
errors. This is the estimator used by the real-time software,and also one of the many ways
it can track the fringe position. In the reduction pipeline software this is referred to as the
V_ENV visibility estimate.

If the signal to noise is high enough it is also possible to dactly t Equation 29 directly
to the bandpass Ttered and normalize data. This is more time ©nsuming that either
of the methods above, but gives estimates for parameters o#@r than visibility amplitude.
Furthermore, for separated fringe packet binaries Fringe tting of this kind is essential in
order to properly measure the fringe peak location and amptiude for each star (O'Brien et
al. 2011). This method fails for lower signal to noise data, bt has been used in a great
many of our papers published to date. In the reduction pipelhe software this is referred to
as the V_FIT visibility estimate.

2.4.2. Frequency Domain Amplitude Estimation

If the signal to noise is too low, it is not possible to analyzethe fringes in the time domain,

but it is still sometimes possible to use the frequency domai. This is in fact the most

common method of calculating visibility amplitude. One problem here is that a frequency
domain, or spectral analysis, almost always involves the us of a Fourier transform and

there are multiple normalizations for Fourier transforms. | believe it is the multiple ways

of de ning a Fourier transform that has resulted in most of the errors, or di®erences, in the
published literature on this subject.

Since we use Numerical Recipes in C (Press et al., 1992) in threduction code, we will use
the normalization used by them. We write the Fourier transform of the function h(t) as
H (f ) and they are related via the relations
Zy
H(f) = h(t)e?” dt (30)
i
and Z,
h(t) = H(f)el 24N d: (31)
il
We need to nd the Fourier transform of Equation 29. Since it is a the multiple of two
functions, the Fourier transform will be the convolution of the transforms of those two
functions. So, we need the transform a sinc function and of aas function. We could look
these up, but the one needs to be very careful about the normaation used by the reference
you use. In order to be certain, we can do the transforms ourdees. More speci cally, since
we have a good idea of what the answer is we can do an inverse frsform which in this
case is much easier.
So, consider the functiont(f | a)+ £(f + a). The inverse transform of this function will be
Zy 1
i(f l a)ei 21/4iftd: + i(f + a)ei 21/4iftd:
6121/4ita + ei 2Yiita I
CcoS(2Yatg) + i sin(2¥4tg) + cos(j 2%atg + i sin(j 2¥4tg
2 cos(2vata) (32)
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and so we have the Fourier transform pair
cos(4ta) ¥ %(i(f i a)+ Hf + a)): (33)
In the case of our fringe Equation 29a = ¥yv and so
cos [243vt] ¥ %(i(f i Yov)+ Hf + Fpv)) (34)

where we have ignored the phase ©. This is safe to do because tietstandard Fourier
relationship _
f(ti a)f e 2*F(f): (35)

When we take the power spectrum of this, that is the squared mdulus, the exponential
term will collapse to 1. Another way of looking at this is to say that phase does not a®ect
the total power in a signal, and as we shall see, it is the totapower that is of interest here.

We next consider the function %: fa , Where

8 .
< 0 jxj>

(x)=. 3 xj= (36)
1

NN N[ =

whose inverse Fourier transform will be

z M|
! }| f g 21/4iftd:

= | = (cos(2Yft) + i sin(2vaft))
(cos(2/sft) + i sin(2v4ft)) o
= 1 [sin(2uift) + i cos(@ft)]
2Yata L2
= 21ita[sin(1At@i sin(j Yata) + i(cos(¥atg | cos( Y4ta)]

sin(¥4tg
Ysta

= sinc(%ata): (37)

So we now have the Fourier pair
1

sinc(¥atg ¥ (38)

Q|

s
' a

where this time Equation 29 gives usa = ¢ 3vso we get
H il
f

. 1
sinc(%stt %) ¥ ¢ 3/4\,: o (39)

This demonstrates that the envelope function, in this case asinc, and the optical Tter
function, in this case a top hat function, form a Fourier pair.
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The next step is to use the standard Fourier relation

f(t)gt)J F(f)=G(f): (40)
So combining Equations 29, 34, 39, and 40 results in the Fouer Transform of the simple
fringe equation
1

F) = Tt vt + %)
¢y eYv 20 Ty
_ V \ Mfi YpV \ “f+3/®v’ (41)
2¢ v ! ¢ Yav : ¢ Yav
and the power spectrum will therefore be
' . f H 1.2
V2 S BEEAY f + Ypv
PS(f (1)) = ! +! ; 42
S((®) 4¢ Ypv2 ! ¢ v : ¢ Yav (42)

The last step is to integrate this power spectrum, which sine it is symmetric, we will only
do over the positive frequencies

VA 1
S = PS(f (1))
B V2 Z 1 | Zuf | ?/@Vﬂ ' (43)
T 4cyRV2Z o ! ¢ Yav
Now, we know that z, - ,
. | 2()dx = 1 2()dx =1 (44)
i T
and so, using the substitutionx = *i72¥ we Td that dx = ;- and the result is that
Z, H 1
fi Yv
12 L o = ¢ Y 45
o ' % W (45)
So, the total power S in the fringe power spectrum will be
VZ
= - 4
S 4¢ 3V (46)
which gives us our estimator forV?
V2 = 4¢ %vS: (47)

This is the same as the result in Benson et al. (1995) except fa factor of 2. This factor of
2 is a result of doing the integration over positive frequengs only, rather than all frequency
space.

All of this assumes that there is no noise in the data, which isof course not true. However,
since we can assume that any noise is not correlated with theihge signal, the power spectra
of the signal and of the noise add and, if we can measure the ra@ power spectra, it can
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FIGURE 6. An example of a raw power spectrum (left) showing a combination of the fringe
signal, photon noise, scintillation noise and camera noise. The peak due to theifiges look Gaussian
instead of square due to atmospheric seeing. Once the noise has been measured and removeyg o
the fringe signal remains (right).

simply be subtracted from the data power spectra before pedrming the integration. An
example of this is given in Figure 6. | will describe how this § done in the following sections
on implementation of this method for CLASSIC and CLIMB.

This calculation can be performed for each fringe scan and a ean and standard deviation
found for V2. In the data reduction pipeline this is referred to as the V2SCANS estimate.

There is one more correction that can be made to the visibiliy estimate. Because of
atmospheric turbulence, the visibility is changing constantly and so can be considered to
be a random variable with some meanV and a variance%. Since we are measuring the
mean of the square of the visibility, we are actually measurmg

VZ=V2+ %, (48)

and thus all estimates of the square of the visibility are bisgsed by the variance of the visibility.
Unfortunately, it is not possible to take the square root of S as, due to the statistical nature
of the measure, it is sometimes negative. It is, however, pathle to squareS, resulting in
an estimate of V4. If one assumes the statistical distribution of the correldion is normal,
one can then form the unbiased estimator for the correlation

0 11

722. — 4
V=@V iVia (49)

with the corresponding variance estimate
r

_ 1 — — _
B = V' E(szi VA i V% (50)

In the data reduction pipeline this is known as the V.NORM estimator.

Since the real visibility can never be negative, it is sometines better to use a log-normal
distribution, normally parametrized using the variables * and ¥#. These can be determined
using

1 vzt
1 = 7'

Ve 51
LR (51)
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and L
1, v4
Y%= >In— (52)
4 2
from which we get the unbiased correlation estimate
— 1
V =exp(* + é%2) (53)
with the variance
Y% =exp(2t +2%7) i exp(2 + ¥4): (54)

In the data reduction pipeline this is known as the V.LOGNORM estimator.

In practice the normal and log-normal equations give virtualy the same results during times
of good seeing, or high visibility, and typically diverge at very low signal to noise.

2.4.3. Implementation of the Amplitude Estimator for CLASSIC

There are several ways to form an expression similar to the siple fringe Equation 29. Since
there are two outputs in the CLASSIC beam combiner, one can deve a visibility estimator
for each output, as well as one for the di®erence between thenin this document we will

focus on the di®erence signal, largely because it is relatiyeimmune to common noise such
as scintillation.

We begin by considering Equation 22, which shows that the twaoutputs of CLASSIC present

fringes in anti-phase, but whose amplitude is changed in eachase by the transfer functions
de ned in Equation 20. In an ideal world these transfer function would be the same, but
any misalignment of the beam combiner optics can result in a ®erence. We must therefore
calculate Tiag and ToAB separately. This is one reason why there are shutter sequeas

in the standard method of collecting the data. A shutter seqence in CLASSIC consists
of a series of scans with one shutter close, followed by anath series of scans with both
shutters close, and nally a series with the rst shutter open and the second shutter closed.
Before 2013 we had one short shutter sequence at the beginmgjnused by the on-line code
for real time visibility estimation, and a longer shutter sequence at the end used by the data
reduction pipeline. Since then, the second sequence kept tfoshutters open and moved

the delay line carts o®-fringe in order to directly measure thenoise power spectra. These
shutter sequences also provide estimates for bothiag and TAB, as well as a measurement
of the background countsB; in each channel.

With these measurements of the backgrounds and transfer furtions of each output of
CLASSIC we can now form the un-normalized estimator for each otput

Fi(t)=(Ni(¥;¢ ¥ i Bi)=Tias : (55)

where B; is the mean background signal in outputi as measured during the shutter se-
guences. We can then form the di®erence between these two s

F(t) =(Fu(t) i Fao(t))=20 (56)

All that remains is for us to normalize this expression
from (t) = 2:0£ F(t)=(Fa(t) + Fa(t)) (57)
= V sinc [/& avi cos [2a3wvt + ©)] (58)
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where F;(t) is the average value across the scan of each output. The relwof all this is
that Equation 59 produces a function of the form of the simplefringe Equation 29 and the
analysis can continue as described above.

It remains for us to estimate the power spectrum of the noisen this signal. There are
three main elements of this noise: scintillation, photon naése, and camera noise. Since the
scintillation noise is present in both the output signals a geat deal is removed when we take
the di®erence between the two signals. As mentioned above, duo optical miss-alignments
and di®erences in camera gain between the two output pixels,here will still be a little
scintillation noise present in the signal, and this noise mgt be measured and removed.

Unlike the scintillation noise, the photon and camera noisecan, in theory, be calculated
given a good knowledge of the camera characteristics. In prdice, however, we have found
that since we need to measure the scintillation, we might as il measure these directly
from the data. Fortunately, we have the data collection sequences before and after the
fringe data, and it is relatively easy to estimate the total noise from these.

2.4.4. Old Shutter Sequence

Before the 2013, we used a duel shutter sequence on CLASSICtdathat is, there were two

shutter sequences, both the same, with one before the data bection and one after. Each
sequence has some data with each input beam by itself and ond fust the background

noise on the camera. For each part of the shutter sequence, Bm A, no beams and beam
B, we do exactly the same analysis as described above for tharfge data. This results in

the three power spectra

PS(fa(t)) = PS(=a(1))+PS(Pa(t)) +PS(C(1)) (59)
PS(fs(t)) = PS(=g(1))+PS(Ps(t))+PS(C(1)) (60)
PS(fpa () = PS(C(1) (61)

where here=j(t) is the scintillation in the signal with just input beam i, P;(t) is the photon
noise with just input beam i, and C(t) is the camera noise. We expect the noise in the
output signal to contain the scintillation and photon noise from both input beams, but to
have the camera noise just once. We therefore write the noisgower spectrum in the signal
to be:

PS(@t)) = PS(fa(t)) +PS(fa(t)) i PS(fpan (1)) (62)
and this must be subtracted from the fringe signal power spettum of Equation 59
PS(f (1)) = PS(from (1)) i PS(@)) (63)

and we can now perform the analysis set out in section 2.4.2.

2.4.5. New Shutter Sequence

At the beginning of 2013 we changed to having only a single shter sequence at the be-
ginning of the collection sequence. This can be used to caltate the transfer functions, the
background counts, and also to get an estimate of the noise peer spectra as described in
the previous section for use in the on-line software system.

Instead of repeating the shutter sequence at the end of the da collection, we now move the
delay line several centimeters away from the fringe locatin and collect a series of scans in
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exactly the same way as the on-fringe scans. This is then anatgd in exactly the same way
as the on-fringe data and provides a much better estimate of tb background noise power
spectrum PS(@t)) than one derived from the shutter sequences described ale.

2.4.6. Implementation of the Amplitude Estimator for CLIMB

Implementing the amplitude estimator for CLIMB is very simi lar to CLASSIC, except how
we have three input and output beams and three baselines to d& with. The procedure is
a little di®erent for each baseline and so | will set them out sparately here.

For each of the three outputs we again rst subtract the mean bakground signal as measured
during the shutter sequence, where in the case of climb we musneasure the signal with
all three shutters closed and then with each of the three shuters A,B and C open in turn.
So we have the un-normalized signals

Fi;unnorm (t) = Ni(¥%; ¢ %) Bj: (64)
We then obtain the normalized signal by dividing by the mean

Fi(t) = Fi;unnorm (t)=Fi; unnrom (t): (65)

Having done this for each of the three output beams 1,2 and 3 ware ready to form the
normalized fringe signal for each baseline

faginom(t) = (F2(t)=Toas i F3(t)=Tzas) =2

Vag Sinc [/4 ¥awg t] cos [2a3vag t + © o ] + Ogc=ca (1) (66)
fecinorm(t) = (F1(t)=Tisc + (Fa(t) + F3(t))=(T2sc + Tsas)) =2

Vec sinc /8 ¥agc t]cos[24%vect + ©gcl+ Opg=ca (t)  (67)
fecanom(t) = (Fa()=Taca i F3(t)=Tsca) =2

Vea sinc [/8 Yaeat]cos [2a3veat + © cal+ Opap=pc (1) (68)

where we have added terms of the formOgc-ca t0 show that in the Fag (t) and fca (t)
signals actually include all three sets of fringes, but at d®erence frequencies. If we restrict
the integration limits when we calculate the total power S;; for each baseline we can separate
out the fringes of interest in each case, and since we know theentral frequency of each
fringe this is not too ditcult unless the seeing causes the poer in the di®erence fringe
signals to overlap.

In the case of the signalf gc (t), if all goes well, only the BC fringes will be present, but
in practice there is often a small amount of leakage from the ther fringes signals due to
optical misalignment and imperfections in the optical coatngs. Still, given that we know
the correct integration range for the visibility analysis t his does not present a problem.

It remains to estimate the noise power in each signal, which @ can do in a way similar to
CLASSIC.

2.4.7. 0Old Shutter Sequence
As for CLASSIC, before 2013 we used a shutter sequence befoaad after the collection

of on-fringe data. The rst shutter sequence can provide an esinate of the noise power
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spectra for use by the on-line control system, while the secahone is used in the data
reduction pipeline.

We normalized signals for the shutter sequences in the sameay we do for the fringe signals
and then calculate the power spectra for each output beam. Wehen have the power spectra
in each output beam for the background signal and for each inpt beam. So for each beam
we have

PS(fia (1)) = PS(=ia (1)) +PS(Pia (1)) +PS(Ci(t)) (69)
PS(fis (t)) = PS(=is (t)) +PS(Pis (t)) + PS(Ci(1)) (70)
PS(fic (t)) = PS(=ic (1)) +PS(Pic (1)) + PS(Ci(t)) (71)
PS(fi pak (1)) = PS(Ci(1)) (72)

where once agairFjj (t) and Pj (t) are the scintillation and photon noise in output beam i
due to input beam j, and C;i(t) is the camera and background noise in output beam.

From these we can now form the noise power spectrum present ieach output pixel

PS(@(t)) = PS(fis(t))+PS(fic(t)) i PS(1 park(t)) (73)
PS(@(t)) = PS(faa(t))+PS(f2s(t)+PS(foc(t))i 2£ PS(f2pak(t)) (74)
PS(@(t)) = PS(fza(t))+PS(fss(t)+PS(fac(t))i 2£ PS(fz pak(t)) (75)

where we note that since in each of the output pixels 2 and 3 thee are three input beams,
and so we need to remove twice the background noise in order toorrectly estimate the
noise power spectra in these outputs.

It is now possible to calculate the noise power in the fringe pwer spectra of Equations 66,
67, and 68:

3

PS@g (1) = PS(@(1)=Toe +PS(@1)=Tie =4 . (9
PS@c (1) = PS(@(1)=Tic +(PS(@(1) +PS(@(W) (Tiac + Toac) =4 (77)
PS@a(1) = PS@1)=Tica +PS(@(1)=Tica = (78)

These must be subtracted from the fringe signals to obtain tke noise free signals

PS(f ag (1)) = PS(faB;norm (1)) i PS(@& (1)) (79)
PS(fsc (1)) = PS(fec;nom (1)) i PS(@c (1)) (80)
PS(fca(t)) =PS(fcanom(t)) i PS(@Aa(1)) (81)

suitable for the analysis set out in section 2.4.2.
2.4.8. New Shutter Sequence
Since the beginning of 2013, the second shutter sequence hasen replace with a sequence

of o®-fringe data by moving the delay lines away from the fringeposition and collecting
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the same number of scans as the on-fringe fringe data. These rcahen be analyzed in
an identical manor to the on-fringe data providing an excellet estimate of the noise power
spectrum. As for CLASSIC, the shorter shutter sequence at tle beginning is use to estimate
the background counts and the transfer functions, as well agn estimate of the noise power
spectra for use by the on-line control system.

2.5. Extracting Closure Phase from the Data

One important, and perhaps most ditcult, part of measuring closure phase is ensuring that
the signs on all the various parts, and on the nal closure phas itself, are all correct. Of

primary importance in getting this right is making sure you are forming closed triangles
of phases, and not open triangles. For example, in an instrumnt that creates fringes in

the image plane, for example an aperture mask instrument, yo need to use the phase of
the negative frequency of the the highest frequency compome of the phase, that is, the

frequencies need to add to zero in order to obtain true closw. In other words, you must

form the complex triple amplitude of the two lowest frequendes and the conjugate of the
highest frequency. In the case of CLIMB, we must also be veryareful about the signs of

the various phases.

First, or course, we must obtain a measurement of the phase ahe fringes on the three
baselines represented in the instrument. Referring back taEquations 25, 28, and gure
4, we recall that the fringes in each baseline are formed at ttee di®erent frequencies of
fca = 1=v, fgc = 2fca and fag = 3fca, where we are for now ignoring the sign on
these frequencies. Thus the fringes occur at multiples of th lowest frequency fringe. since
we know the sample rate of the detector and the fringe frequeties, it is relatively easy
to extract a segment of that contains only one cycle of the lowst frequency fringe. Thus
if we are sampling at a frequency off samp Hz, we will use a segment that isf ca =fsamp
samples in length. In almost all cases we arrange things so #t this is a integer multiple of
3. The default at the time of writing this document is to have 5 samples across the highest
frequency fringe, and so one segment would be 15 samples imégh. It is also common
to use less than this default, where the minimum useful rate $ 3 samples per fringe, or 9
samples per segment. An example segment of real, albeit vetyigh signal to noise, data is
given in the upper plot of Figure 7.

The Fourier Transform of this segment will contain, in the rs t four bins, the DC, one cycle,
two cycle, and three cycle per segment complex amplitudes hat is the DC component and
the three frequencies of the three fringes we are interesteth. The lower plot of Figure
7 shows the power spectrum of the example segment. Note hownmabst all the power
is contained in the rst three frequency bins. We can therefoe extract quite easily the
amplitude and phase of the three fringe patternsF (f ac), F(fcg), and F(f ag ). Note that
it is at this point that we need to be careful about the sign of the phases. TheCA fringes
are reversed due to the geometry of the beam combiner, whilehe BC are reversed due to
the motion of the dither mirrors. We therefore use the triple product

Angc = F(fag) £ F (fec) £ F (fac) (82)

as our estimator for the closure phase. One nal wrinkle is to ke into account that the
dither mirrors move both forward and backwards on alternate scans and so, given our
de nition of Phij being positive when the phase of is ahead of the phase of , we need to
take the conjugate of the entire triple product A g~ on each alternate scan. In this way, it
is possible to obtain a triple product, both amplitude and phase, for each segment in each
fringe scan, as shown in Figure 8.
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FIGURE 7. Example of extracting the closure phase signal from a single segment. The plot

on the left shows the raw signal in output pixel B of a single high SNR segment. Theplot on the

right shows the power spectrum of this segment. Note that almost all the pwer is in the rst three

non-zero frequency bins representing the fringe with one cycle per segment (CA), two cyclesp
segment (BC) and three cycles per segment (AB).

This calculation can be performed on each scan in the data setThe nal closure phase

estimate is produced by rst taking the mean of the triple product across all scans, and
then calculating its phase. This means we have a closure phasstimate weighted by fringe

amplitude. Of course, there is little point in keeping track of those segments in which we
know no fringes exist, so the actual data reduction code lock for fringe overlap and other

things, such as whether fringes appear in the scan at all. Thee issue will be discussed in
the following sections.

A last, but very important, consideration is the nal sign of t he closure phase estimate. All
of the calculations described above have been performed witrespect to the input beams
of the beam combiner, and what we are really interested is onite UV coordinates of the
telescopes these represent on the sky. This calculation isoh ditcult given the position
of the star on the sky and the, assumed well known, positions fothe telescopes on the
ground (see for example Equation 12.1 in Dyck (1999) or Equatn 4.3 in Thompson et.
al. (2001)). However, try as | might | have failed to nd an overt de nition of the sign
convention of closure around a triangle of telescopésbut it appears most common to say
that when looking from above the sign of the closure is positie going anti-clockwise around
the triangle of telescopes, and this is the convention usednithe CLIMB data reduction
pipeline. In the end what really matters is that you use the sane convention in both you
reduction and imaging/modeling software.
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FIGURE 8. Example of extracting the closure phase signal from a single scan. The top left

plot shows the raw signals in output pixels B (solid line) and C (dashed line) of a mgle high SNR
scan. The top right plot down shows the triple product amplitude of the signals. The bottom left
plot down shows the closure phase of the two signals, or phase of the triple productNote how the
closure phase is random in the places where the triple product amplitude is zero. The plottahe
bottom right shows the triple product amplitude weighted means of the closure phae signals of all
scans in the data Te.
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