
Computer Control

W. Daley & R. Carey

GTRI, Georgia Institute of Technology, Atlanta, GA 30332

U.1. INTRODUCTION

This chapter discusses both the system and subsystem control computers. The purpose of
the system control computer is to provide a single machine that will allow a user to control
the operation of the CHARA Array. This computer will allow the user to acquire astro-
nomical data, align optics, and perform diagnostics and is also responsible for interfacing
with remote users and providing them access to the system. The subsystem control com-
puter, on the other hand, communicates between the system control computer and each of
the subsystems, controlling motors, solenoids, et cetera, and transmitting status reports on
each of the subsystems to the central computer.

U.2. SYSTEM CONTROL COMPUTER

U.2.1. Functionality

The system will provide a graphical user interface with the following functionality:

� Communicate directly with each subsystem

� Control all subsystems together as one unit

� Acquire and store data

� Display the state of the optics graphically

� Display environmental conditions

� Display any subsystem error conditions

� Control individual telescopes and all subsystems

U.2.2. Requirements

The system computer needs to:

� Perform multiple tasks concurrently

� Share �le information with other computers

� Communicate simple commands and data to subsystems

� Monitor and record real-time control information of the subsystems

� Provide Internet access for remote users

� Provide reliable and maintainable software

U � 1

THE CHARA ARRAY

FIGURE U.1. Communication and control signals.

U.2.3. Design

U.2.3.1. Hardware

A SUN Microsystems SPARC 10 was chosen for the system control computer. This machine
uses the UNIX based Solaris 1.1 operating system which will allow multiple users to log-on
and multiple programs to be executed concurrently. The SPARC 10 supports an ethernet
network interface which will be used to send simple commands and data to the individual
subsystems. This network will also be used for aligning and trouble-shooting problems with
the system. The operating system supports the Network File System (NFS) which will be
used to transfer �les between the various subsystems.

The workstation will have a replicated memory card installed, which will be connected by
�ber-optic cables to replicated memory cards installed in each of the subsystem computers.
This real-time replicated shared-memory system will connect computers at high data speeds
(150 Mbits/sec) with minimal application-to-application transport delay. This network will
allow the system control computer to monitor the status of the control variables located
on the individual subsystems, by looking at its local memory located on the replicated
memory card. The network will also allow the subsystem computers to do real-time control
synchronization by using local variables located on the replicated memory cards.

The system control computer will generate a TTL clock which will be distributed to all
the subsystems over a �ber optic network. This clock will be used to synchronize all the
motor controllers to insure stable system operation. The connections between the system
computer and the other subsystems can be seen in Figure U.1.

U � 2

COMPUTER CONTROL

FIGURE U.2. Software object design.

U.2.3.2. Software

The software will be developed in the C++ language, which supports object oriented soft-
ware design and implementation. The use of object oriented programming (Figure U.2)
will ensure that the software is developed so that it is reliable and maintainable. This is
done by forcing the consideration of total system functionality and design before any code
is written. The program is designed as a number of objects that interact with each other
through well-de�ned interfaces. This means that all objects in the program have to be
identi�ed and the data ow between them determined. Once an object has been developed
and its associated functions have been debugged, it can be used on any subsystem that
has similar requirements without any modi�cation. It also means that an object can be
updated without interfacing with the rest of the system.

The Graphical User Interface (GUI) will be developed using the X Windows standard and
the Motif widget toolset. This GUI supports widgets that implement pop-up windows,
scroll bars, push buttons, list boxes, edit boxes, etc. These widgets will allow the user to
interact with the GUI using a mouse and keyboard.

The GUI will allow objects, like mirrors, telescopes and beam paths to be drawn graphically
on the screen. The user will manipulate these objects by clicking the mouse on the object
and dragging it to its new location. This will be useful in inserting or removing a mirror
from the optical path, for example.

U.2.4. Risks

The technical risks associated with the successful completion of this aspect of the project
would be minimal.

U � 3

THE CHARA ARRAY

U.2.5. Options

There are many options to the various parts of the system control computer but only a few
possibilities will be discussed here.

The system computer could have been another type of workstation such as HP, IBM, Sil-
licon Graphics and DEC but they each have their limitations of networking, processing
speeds, hardware and software availability. The SUN workstation provides the most cost
e�ective solution to the problem. An IBM 486 computer could be used but it would have
to run a multi-tasking, multi-user operating system to successfully implement the system
control computer. The operating systems that currently run on IBM 486s that meet these
requirements are UNIX and Windows NT. SUN's UNIX implementation is a lot better than
any UNIX that runs on a PC, and Windows NT is an unproven product.

The replicated memory network could be replaced by a deterministic network like a token-
ring network. This solution would require that software be developed to handle the message
passing between the various subsystems. Although this is not an impossible task, it adds
a level of complexity to the system software design, that makes it harder to develop and
extremely di�cult to maintain.

C could have been chosen as the development language, since it is well known and widely
used. Although C is a powerful language, it does not force the developer to write maintain-
able software. Instead, it leaves it up to the developer to ensure that there are no conicts
between the various modules in the system. In very large software projects like the CHARA
Array, a lot of diligence and documentation is required on the part of the developers, to
ensure that there are no side e�ects from one module interacting with another. In C, there
is also no well de�ned mechanism to ensure that code developed for one module will work
in another module. C++, on the other-hand, eliminates side e�ects by hiding the data
and function implementations from the rest of the program. This ensures that data is only
manipulated by member functions that use the proper procedures, thus eliminating adverse
side e�ects which in most cases reduce the integrity of the software.

U.3. DATA ACQUISITION COMPUTER

While the system control computer is responsible for the real time control aspects of the
Array another system is required for data logging and reduction. This system will be
required to log any data produced by the fringe tracking and imaging systems, produce
real-time estimates of visibilities and allow access to, but not control of, many of the Array
subsystems. This computer will allow the operator, or a visiting astronomer, to inspect
data `on the y' and perform basic data reduction without interfering the the operation of
the Array. A Sun Sparc or equivalent Unix machine connected to the local area network
should be adequit for this job.

U.4. SUBSYSTEM CONTROL COMPUTER

U.4.1. Functionality

The subsystems will provide the following functionality:

� Communicate with each subsystem and central controller

U � 4

COMPUTER CONTROL

� Control necessary control devices (motors, solenoids, etc..)

� Transmit current subsystem status to the central controller

� Transmit error conditions to the central controller

U.4.2. Requirements

The subsystem computer needs to:

� Perform multiple tasks concurrently

� Respond to simple commands from the system control computer

� Control hardware devices (motor controllers, digital I/O, etc.)

� Monitor environmental conditions

� Provide reliable and maintainable software

U.4.3. Design

U.4.3.1. Methodology

There were two hardware design methodologies considered:

The �rst method was to make the initial cost of the system as low as possible while providing
the desired functionality. This could be accomplished by determining and de�ning all the
communication protocols between each subsystem. As long as the communication protocols
were well de�ned and adhered to, it would not matter what hardware platform was used
for each subsystem. Each subsystem could then be optimized to be the most cost e�ective
for its functionality. For example, a subsystem that monitors environmental variables and
controls a set of mirrors could be built on a low-cost STD bus system, whereas a system that
needs to acquire real-time data and perform FFT processing would use a VME type system
with DSP processor cards installed. Although this design methodology would produce the
cheapest initial system, it would be very expensive to maintain in the long run. This is
because there would have to be someone who is familiar with each of the di�erent hardware
and software architectures used. Such individuals are typically hard to come by. Also, the
stocking of spare parts to �x failed boards would be cost prohibitive, since spares would
have to be stocked for each di�erent subsystem.

The second design methodology was to make the software development and long-term main-
tenance as simple and cost e�ective as possible. This was done by using the same base com-
puter system in all the subsystems. While this might be overkill for some subsystems, it
will make for a more reliable and maintainable overall system in the long run. The CHARA
solution is to specify a BUS architecture, the main processing board, and a real-time oper-
ating system. Various I/O, D/A, A/D, and DSP boards are speci�ed that can be used if
needed by the subsystems. This means that there is a base con�guration that is the same
across all subsystems, with modularity built in with the choice of interface boards. This
solution allows software developed for one subsystem to be used on another subsystem, and
the same spare parts can be stocked for all subsystems.

Choosing the correct BUS was very important and the following Buses were considered
because of the availability of real-time hardware and software:

� PC

� Multibus

U � 5

THE CHARA ARRAY

� STD
� STD-32
� VME
� VXI

Table U.1 shows a comparison of these options; the di�erent category ratings are discussed
below.

TABLE U.1. Comparison of available BUS architectures.

BUS Ethernet DSP A/D, D/A, Motor Real-Time Cost Reliability
Support Support Digital Controller O/S

I/O Support Support Support

PC Very Good Very Good Excellent Excellent Good Excellent Fair
Multi Good Good Good Good Good Good Good
STD Good Fair Excellent Good Good Very Good Excellent

STD-32 Good Good Excellent Good Good Good Very Good
VME Excellent Excellent Excellent Very Good Excellent Good Very Good
VXI Good Fair Very Good Good Very Good Good Good

U.4.3.2. Category Rating Description:

� Ethernet Support

Excellent CPU cards have ethernet ports built in, and software drivers supplied
Very Good Ethernet cards and drivers are available from many vendors
Good Ethernet cards and drivers are available from a few vendors
Fair Ethernet cards and drivers are available from one vendor
Poor No ethernet cards or drivers available

� DSP Support

Excellent Many di�erent vendors with very high speed computational boards
Very Good Many di�erent vendors
Good A few di�erent vendors
Fair One vendor
Poor No vendors

� A/D, D/A, & Digital I/O Support

Excellent Many di�erent vendors with many di�erent boards
Very Good Many di�erent vendors
Good A few di�erent vendors
Fair One vendor
Poor No vendors

U � 6

COMPUTER CONTROL

� Motor Controller Support

Excellent Many di�erent vendors with many di�erent boards
Very Good Many di�erent vendors
Good A few di�erent vendors
Fair One vendor
Poor No vendors

� Real-Time O/S Support

Excellent BUS supports many di�erent processors and O/Ss
Very Good BUS supports many di�erent O/Ss
Good BUS supports a few di�erent O/Ss
Fair BUS supports one O/S
Poor None

� Cost

Excellent Many low-cost boards and software (<$500)
Very Good Few low-cost boards and software
Good Many medium-cost boards and software ($500 { $1500)
Fair Few medium-cost boards and software
Poor Only high-cost boards and software (>$1500)

� Reliability

Excellent Very high MTBF, very good mechanical support for cards
Very Good High MTBF, good mechanical support for cards
Good Average MTBF, average mechanical support for cards
Fair Low MTBF, poor mechanical support for cards
Poor Very low MTBF, very poor mechanical support for cards

Assigning a scale of 1 { 5, with 5 being excellent and 1 being poor, gives the following
overall rating shown in Table 0.2.

All categories were determined to be of equal importance and no weighting was used. Based
on this selection criteria the VME BUS scored the highest and was chosen for the subsystem
controllers. The available software tools and development environment were not taken into
consideration but will be discussed in a later section.

U.4.3.3. Hardware

AMotorola{based CPU board was chosen as the central processor for the VME BUS because
it is widely supported by the real-time operating systems. The CPU board will have the
following speci�cation:

� 25 MHz MC68040 microprocessor with 8KB of Cache

U � 7

THE CHARA ARRAY

TABLE U.2. Rating of available BUS architectures.

BUS Ethernet DSP A/D, D/A, Motor Real-Time Cost Reliability Total
Support Support Digital Controller O/S

I/O Support Support Support

PC 4 4 5 5 3 5 2 28
Multi 3 3 3 3 3 3 3 21
STD 3 2 5 3 3 4 5 25

STD-32 3 3 5 3 3 3 4 24
VME 5 5 5 4 5 3 4 31
VXI 3 2 4 3 4 3 3 22

� 8 MBytes of DRAM

� Ethernet interface

� Sockets for on-board ROM/EPROM

The base system will also contain a replicated shared-memory �ber-optic network card,
which will allow each subsystem to have an exact copy of a block of memory. This real-
time replicated shared-memory system will connect computers at high data speeds (150
Mbits/sec) with minimal application-to-application transport delay. Variables stored in
this block of memory will be available on all subsystems as local variables. This will make
developing the system software much easier, since time will be spent developing software to
control the subsystem as opposed to implementing complex communication schemes between
the individual subsystems. For example, the OPLE subsystem needs error information from
the fringe tracking subsystem, which can be implemented by having the fringe tracker write
the error information to a speci�c memory location and then set a ag in another memory
location. The OPLE subsystem would read the error information when the ag is set, and
then clear the ag. In this approach, no software development need be expended on the
communication between the OPLE and fringe tracker, since it is all handled in hardware.
The replicated memory system will also be invaluable for trouble-shooting and system
debugging, since the control variables of each subsystem can be seen and recorded at the
central computer.

The remaining cards that will go in the VME chassis will be optional and depend on the
functionality of the subsystem. A diagram of a typical subsystem can be seen in Figure
U.3.

U.4.3.4. Software

The software will be developed in the C++ language, which supports object{oriented soft-
ware design and implementation. The use of object{oriented programming will ensure that
the software is developed for reliability and maintainability, since it forces the software to
be completely designed before any code is written. It is anticipated that the CHARA Array
will use an open system that will adjust to the needs of its users. The software should
thus be designed to accomodate these changes and modi�cations as painlessly as possible.
The program is designed as a number of objects that interact with each other through
well-de�ned interfaces. This means that all the objects in the program have to be identi�ed

U � 8

COMPUTER CONTROL

FIGURE U.3. Subsystem controller.

and the data ow between them determined. Once an object has been developed and its
associated functions have been debugged, it can be used on any subsystem that has similar
requirements without any modi�cation.

VxWorks by Wind River Systems is a real-time operating system that will be used on the
subsystem controllers. This UNIX-like operating system will allow multiple tasks to run
concurrently while maintaining their priority schemes. This means that the task with the
highest priority will execute whenever it needs to, while other lower priority tasks will be
put on hold. VxWorks also allows the user to log in from remote locations and interact
with tasks running on the system.

The software development environment will consist of a product called ObjectCenter from
CenterLine Software, Inc. This product is hosted on a Sun Sparc Station and provides an
intuitive user-friendly environment to develop, debug, and document C++ code.

U.4.4. Risks

The technical risks associated with the successful completion of the subsystem design and
integration are not signi�cant. The areas that would be of most concern would be the
development of low-level device drivers to control various pieces of hardware. In most cases
this should not be necessary, as it is anticipated that we will be able to purchase most of
these drivers with the associated equipment.

U � 9

