

Data Format, Modeling, and Imaging

Jeremy Jones

CHARA Data Scientist

With contributions from: Gail Schaefer, Fabien Baron, and Laurent Bourgès

Data Reduction

- CHARA staff and consortium members will support data reduction to OIFITS format
- Many users may find it informative to run reduction software and calibration themselves
- Reduction software will be available on CHARA server
- Data analysis, model fitting, image reconstruction performed by users

OIFITS Format

- OIFITS: Data exchange standard for Optical Interferometry
- Target and instrument information tables:
 - OI_TARGET
 - OI_ARRAY
 - OI_WAVELENGTH
- Data tables:
 - OI_VIS2
 - OI_T3

OI_VIS2 Table (OIFITS)

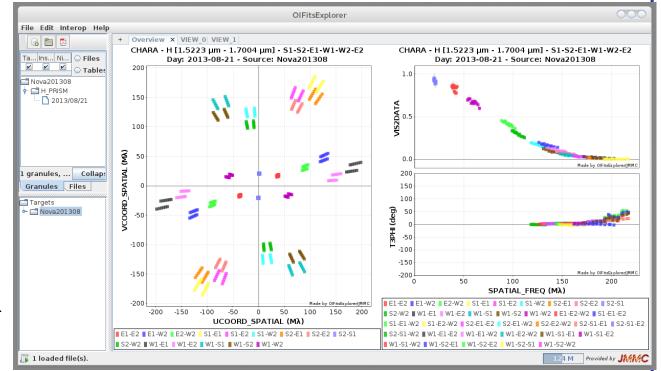
TARGET_ID	Target number	
TIME	UTC time of observation (s)	
MJD	Modified Julian Date	
INT_TIME	Integration time (s)	
VIS2DATA	Squared Visibility	
VIS2ERR	Error in Squared Visibility	
UCOORD	U coordinate of data (m)	
VCOORD	V coordinate of data (m)	
STA_INDEX	Station numbers	
FLAG	Flag	

OI_T3 Table (OIFITS)

TARGET_ID	Target number	
TIME	UTC time of observation (s)	
MJD	Modified Julian Date	
INT_TIME	Integration time (s)	
T3AMP	Triple Product Amplitude	
T3AMPERR	Error in Triple Product Amplitude	
T3PHI	Triple Product Phase in degrees	
T3PHIERR	Error in Triple Product Phase in degrees	
U1COORD	U coordinate of baseline AB in triangle (m)	
V1COORD	V coordinate of baseline AB in triangle (m)	
U2COORD	U coordinate of baseline BC in triangle (m)	
V2COORD	V coordinate of baseline BC in triangle (m)	
STA_INDEX	Station numbers	
FLAG	Flag	

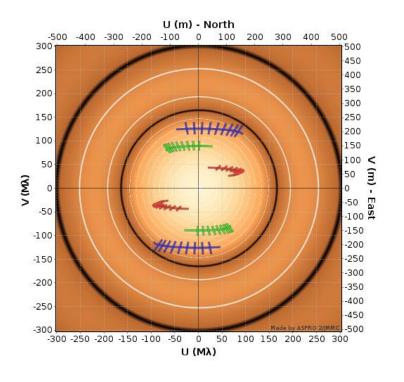
Software for Reading/Writing OIFITS Files

- OIFITSlib C Library
 - https://github.com/jsy1001/oifitslib
- IDL OIFITS Library by John Monnier
 - http://dept.astro.lsa.umich.edu/~monnier/oi_data/
- OIFITS Explorer by JMMC
 - http://www.jmmc.fr/oifitsexplorer_page.htm
- OITOOLS.jl in development by Fabien Baron
 - Data visualization and modeling (Julia)



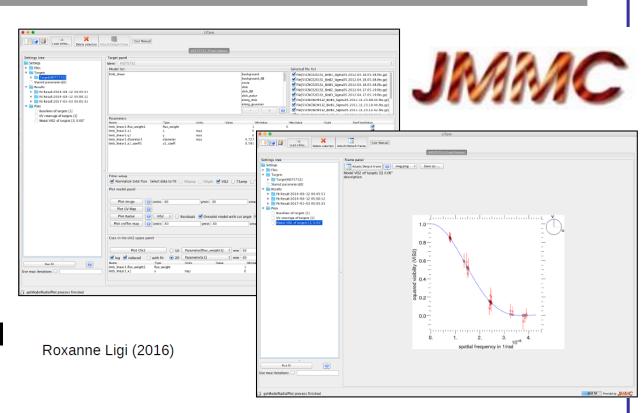
OIFITS Explorer

- Visualization
- Load OIFits files
- Plots:
 - uv coverage
 - V2, T3, ...
 - HA, PA, SNR
- Future:
 - Editor: flag and export merged OIFITS files
 - Better data selection graphically



Data Analysis

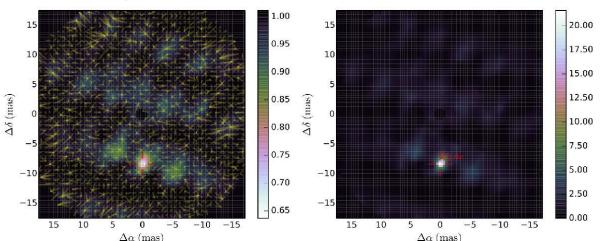
- Interferometers measure the Fourier Transform of the brightness distribution
- Sparse sampling
- Geometric model fitting
- Physical models
- Image reconstruction



Model Fitting: LITpro

- Fit geometric and limb-darkened models
- Plots to visualize data, models, and results of fits
- Tools to find global minimum

http://www.jmmc.fr/litpro_page.htm



Model Fitting: Companion Search - CANDID

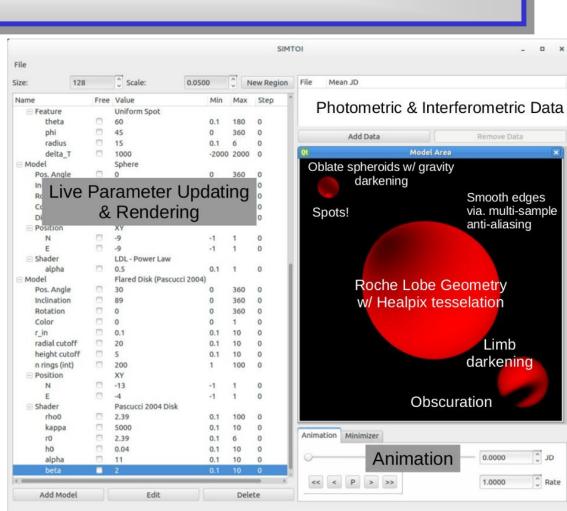
- Companion Analysis and Non-Detection in Interferometric Data
- Grid search for binary companions
- Estimate detection limits
- https://github.com/amerand/CANDID

Gallenne et al. (2015)

Model Fitting: SIMTOI

- SIMTOI: Simulation and Modeling Tool for Optical Interferometry
- Written by Brian Kloppenborg
- GPU accelerated
- Photometry + interferometry
- Physical models
- Global optimization
- Keplerian orbits

https://github.com/bkloppenborg/simtoi



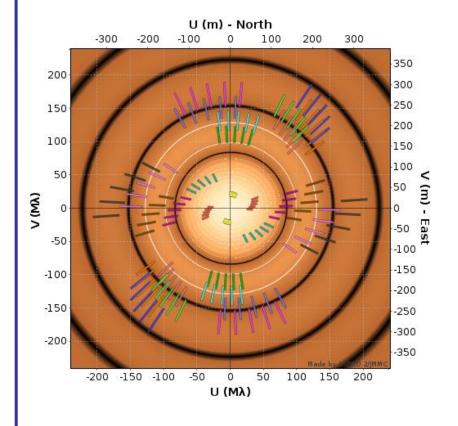


Image Reconstruction

- Sparse sampling of Fourier frequencies in plane of sky
- Inverse Fourier transform to obtain image
- Compromise between:
 - Fitting available data
 - Keeping the image as regular (simple) as possible

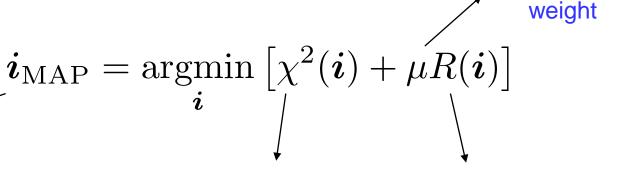


Image Reconstruction

Regularized maximum likelihood

Most probable image

Likelihood term:

Comparison of model to data

Regularizer:

Regularization

Helps interpolate missing Fourier data (smoothness, compactness, total variation, maximum entropy)

Image Reconstruction Software

Software	Optimization	Regularizer	Multi- Spectral	Simultaneous Model Fitting
BSMEM	Trust region gradient	Maximum Entropy Method	No	No
MACIM	Simulated annealing	Maximum Entropy Method, Darkness	No	Yes
MiRA	Variable Metric Limited Memory with bound constraints	Many	No	Yes
SQUEEZE	Parallel Tempering	Many	Yes	Yes
PAINTER	Alternating Direction Method of Minimizers	Many	Yes	No

Imaging Tutorial

904 Vol. 34, No. 6 / June 2017 / Journal of the Optical Society of America A

Tutorial

OPTICS, IMAGE SCIENCE, AND VISION

Principles of image reconstruction in optical interferometry: tutorial

ÉRIC THIÉBAUT1,* AND JOHN YOUNG2

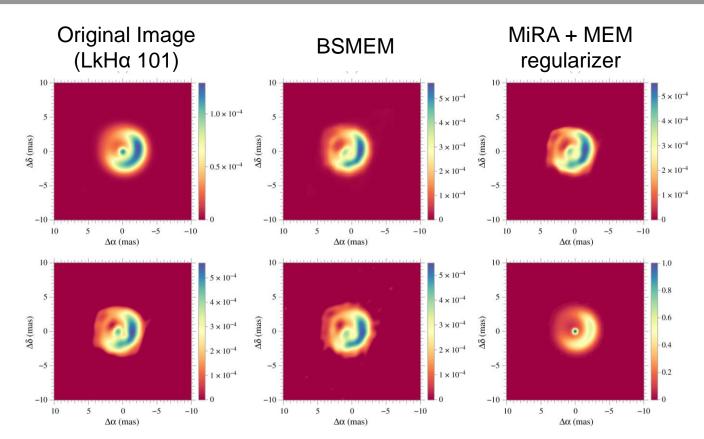
¹University of Lyon, University Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France

²University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

*Corresponding author: eric.thiebaut@univ-lyon1.fr

JMMC is developing a common interface for "classic" image reconstruction software

http://www.jmmc.fr/oimaging.htm



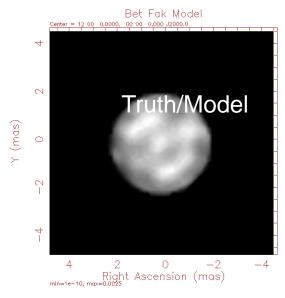
Different Reconstruction Methods and Regularizers

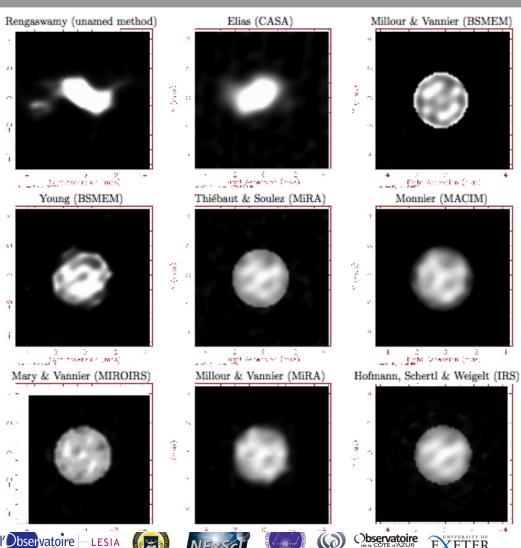
Thiebaut & Young (2017)

MiRA + compactness quadratic

MiRA + edge-preserving

SQUEEZE with I₀ norm wavelet coefficients

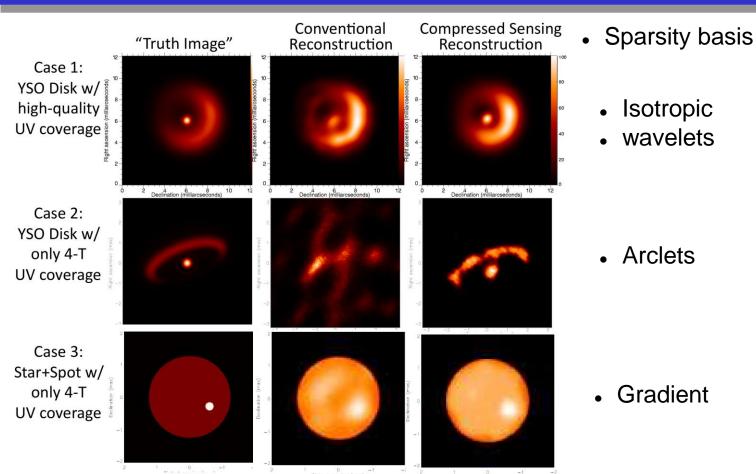




High Fidelity Imaging of Complex Targets is Difficult

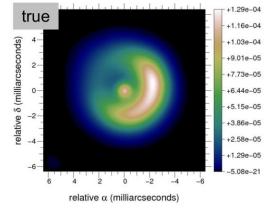
AZ Cyg 2012 IAU Interferometry **Beauty Contest**

Baron et al. 2012

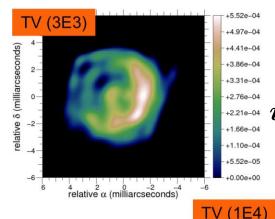


Ongoing Research on Better Regularization

Baron et al., in prep

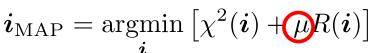


Regularization Weight



Images by
E. Thiebaut (MiRA)
courtesy of F. Baron

+5.28e-04


+4.75e-04

+4.22e-04

relative δ (milliarcseconds)

⁴ relative α (milliarcseconds)

+5.40e-04

+4.86e-04

+4.32e-04

+3.78e-04

+3.24e-04

+2.70e-04

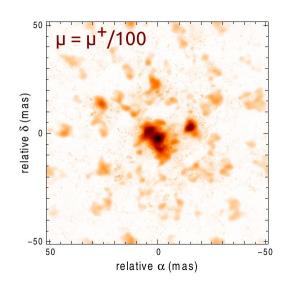

+2.16e-04

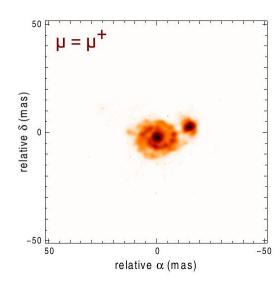
+1.62e-04

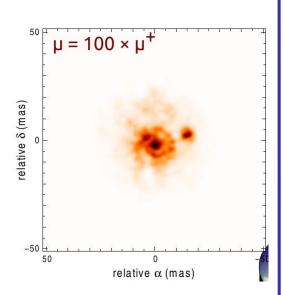
+1.08e-04

+5.40e-05

+0.00e+00

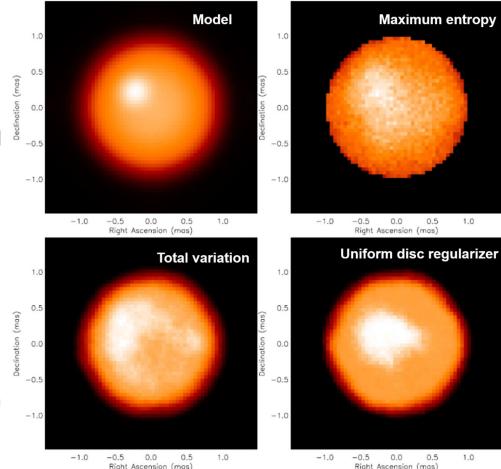



4 2 0 -2 -4 relative α (milliarcseconds)


TV (1E6)

Avoid under and over regularization

Images by S. Renard See Renard et al., 2011



Artifact Detection Fabien Baron

- Use two control sets:
 - model image of object with complexity (e.g., spotted star)
 - much simpler model image with no features (e.g. limb-darkened disk)
- Simulate observations copy
 Fourier coverage and signal to noise from original data
- Reconstruct images for two control data sets and check fidelity of reconstructions
- Were spurious features introduced in simple model?
- Were feature correctly recovered in the complex model?

Links for modeling and imaging software available on the CHARA website:

http://www.chara.gsu.edu/analysis-software/

