

Observing Strategies and Planning Software

Gail Schaefer

The CHARA Array of Georgia State University

Mount Wilson, CA

With contributions from: Laurent Bourgès and Christopher Farrington

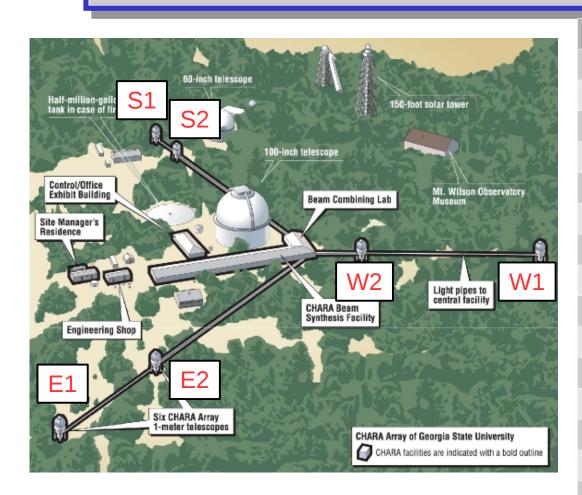
Outline

- Selecting a Beam Combiner
- Selecting Telescopes and Baselines
- Selecting Calibrator Stars
- Selecting Delay Settings (POP Configuration)
- Time Needed for Observations

Beam Combiners

Combiner	Num Tel.	Band	Typical Mag			Science	
CLASSIC	2T	H or K	7.0	8.5	Broad	Diameters	
CLIMB	3T	H or K	6.0	7.0	Broad	Binaries, disks	
JouFlu	2T	K	4.5	5.0	Broad	Diam, precision	
MIRC	6T	Н	5.0	6.0	40	Stellar imaging, binaries, disks	
PAVO	2T	630-900 nm	7.0	8.0	30	Diameters	
VEGA – HiRes	2-4T	2 bands (7nm) in 480-850 nm	4.0	5.0	30000	Spectral studies	
VEGA – MedR	2-4T	2 bands (35 nm) in 480-850 nm	6.5	7.5	6000	Spectral studies, diam.	

Limit for acquisition and tiptilt tracking: V = 10-12 mag

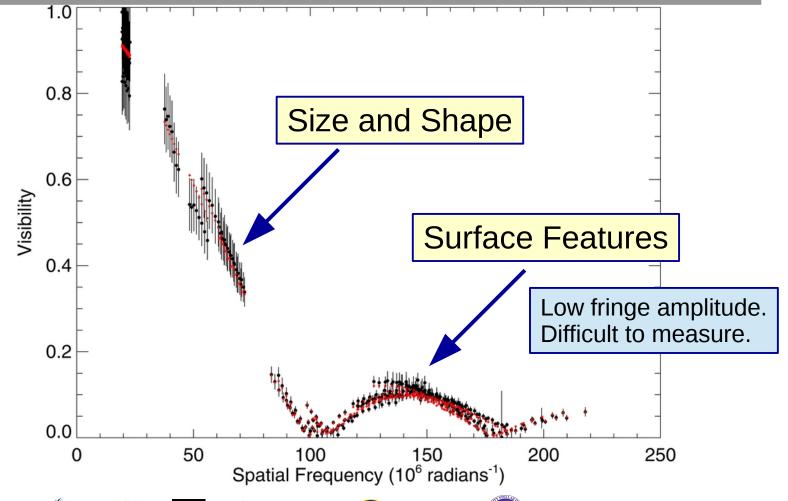


Telescopes and Baselines

Baseline	Length (m)
E1-S1	331
W1-E1	314
E1-S2	302
E2-S1	279
W1-S1	279
W1-E2	251
W1-S2	249
E2-S2	248
W2-S1	211
W2-E1	222
W2-S2	177
W2-E2	156
W2-W1	108
E2-E1	66
S2-S1	34

Selecting Beam Combiner and Baselines

- Angular Resolution: 0.5 λ /B
 - 0.66 mas in K-band (2.13 μm)
 - 0.52 mas in H-band (1.67 μm)
 - 0.20 mas in visible at 650 nm
- Simple diameter:
 - Single baseline (two telescopes)
- Imaging complex sources: Binaries, rapid rotators, stellar surfaces
 - Multiple baseline projections
 - Imaging sample beyond the first null (at 1.22 λ /B)



Selecting Beam Combiner and Baselines

Wavelength Coverage

- Broad-band
 - Higher sensitivity for faint objects
 - Bandwidth smearing
- Spectrally dispersed visibilities
 - Increase u,v sampling by measuring fringes in different wavelength channels
 - Emission/absorption line studies
- Coherence length (width of fringe packet)
 - Sets the interferometric field of view

Calibrator Stars

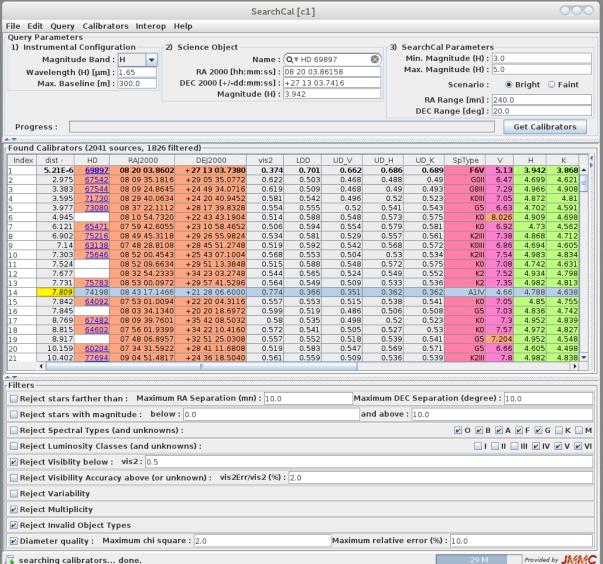
- Unresolved point source:
 - Visibility = 1.0
- However, instrumental and atmospheric effects will cause a loss in coherence, causing a drop in the measured visibility.
- Observe unresolved calibrator stars to define the true visibility of the target.

Selecting Calibrators

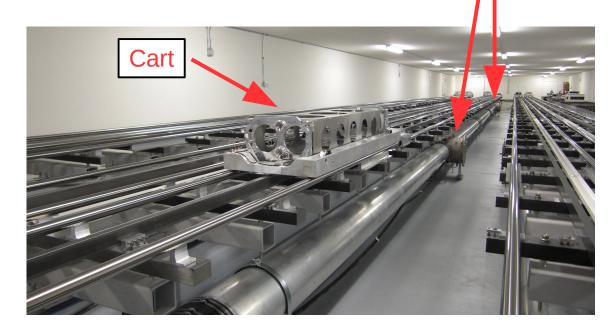
- Unresolved stars or stars with a known angular diameter.
- Within 5-10 degrees on the sky from the science target.
- Within 1-2 mag in brightness from science target and similar in color.
- Avoid binary stars, rapid rotators, emission line stars.
- Minimum of two calibrators per object, three is better.
 - Discovery of unknown binaries

Selecting Calibrators

- SearchCal developed by JMMC
 - http://www.jmmc.fr/searchcal_page.htm
- getCal developed by NexSci
 - http://nexsciweb.ipac.caltech.edu/gcWeb/gcWeb.jsp



SearchCal



Delay settings (sky coverage)

Delay settings to equalize optical path length

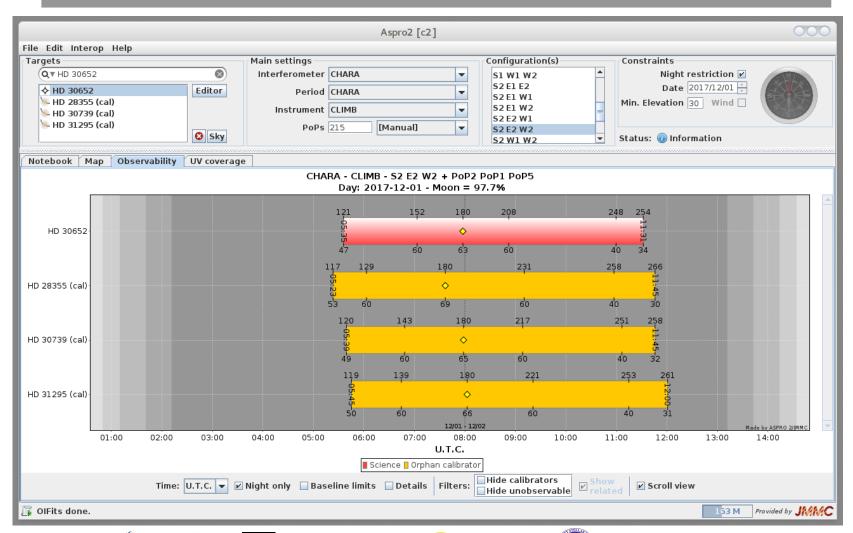
Fixed increments: PoPs

Variable delay: carts

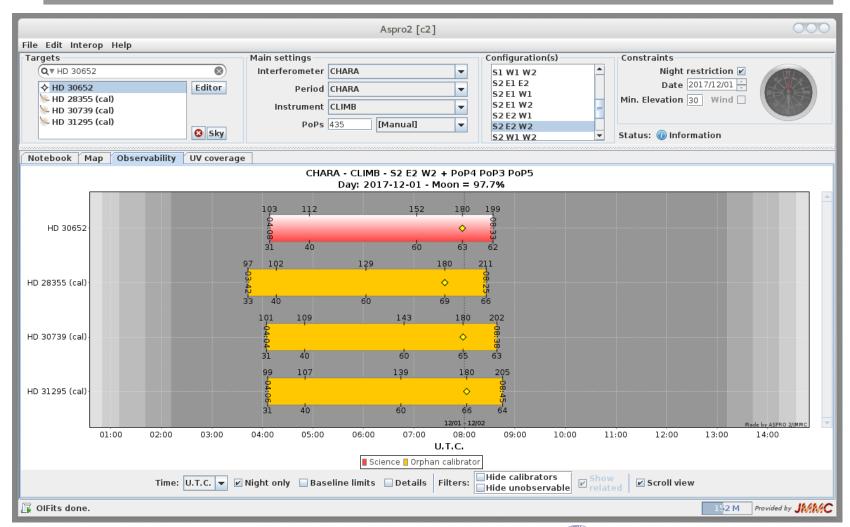
PoPs

Planning Software

- ASPRO2 developed by JMMC
 - http://www.jmmc.fr/aspro page.htm
- CHARA_PLAN2 developed by CHARA
 - http://www.astro.gsu.edu/~theo/chara_reduction/index.html



ASPRO 2 JA

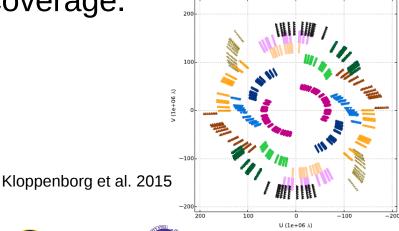


ASPRO 2 JA

			Aspro2 [c1]					000
File Edit Interop Help								
Targets		Main settings			Configuration(s)		Constraints	
Q ▼ HD 56537	8	Interferometer	CHARA	-	S1 W1 W2	_	Night restriction 🗹	
♦ HD 30652	Editor	Period	CHARA	-	S2 E1 E2 S2 E1 W1		Date 2017/12/01 🗦	
ND 28355 (cal)		Instrument			S2 E1 W2	-	Min. Elevation 30 Wind	
> HD 30739 (cal)		instrument			S2 E2 W1			S
ND 31295 (cal)		PoPs	215 215	_	S2 E2 W2		_	
	Sky				S2 W1 W2	▼	Status: ① Information	
Notebook Map Observability UV cov	verage OIFits	viewer			***************************************	***********		
Instrument mode					2 + PoP2 PoP1 PoP5	5		
H 🔻 📗			Day: 201	17-12-01 - S	ource: HD 30652			
Atmosphere quality 1.0	0 🔲			U (n	n) - North			
Average ▼ 0.9	5		-500 -400 -30 300 t	0 -200 -100	0 100 200 300		20	
0.9	0		300			50	50	
U-V range to plot (m) 0.8	5		250			40		
347.20 0.8	0					35		
Sampling Periodicity (min) 0.7	5.		200			30		
40 0.7			150			25		
Total Integration time (s)					\ 	-20	00	
300 0.6			100	HAM		15	50	
HA min -2.37 0.6			50			-10	00 <	— S2-E2
-6.00 0.5	5					-50		S2-W2
HA max 3.58 0.5	0		(M) V			0		— E2-W2
6.00	5		> -50	Time		-5		
✓ Plot rise/set uv tracks 0.4	0		-50				00 S	
0.3	5		-100		HHHM		50	
✓ Underplot a model image 0.3	0		150	7////	/ -		00	
Plot what AMP ▼ 0.2			-150				50 00	
0.2 0.2			-200				50	
			1				00	
☑ Compute OIFits data 0.1			-250				50	
✓ Add error noise to data 0.1			-300			y ASPRO Z/JMMC -5		
Use inst. & cal. error bias	5 -		-300 -250 -200			00 250 300		
0.0	0 💻				U (Mλ)			
OIFits done.							117 M	Provided by JMMC

How much time is needed?

- Calibration Strategies:
 - Cal1 Obj Cal2 Obj Cal1 ...
 - Cal1 Obj Cal2 Cal1 Obj Cal2 ...
- Time to collect data on single object (star acq. + data)
 - Seeing and brightness dependent
 - Fast instruments (CLASSIC, CLIMB, PAVO, JouFlu):
 - 5 15 minutes
 - VEGA: 10 20 minutes
 - MIRC: 45 60 minutes
- Cal-Sci-Cal will take between 30 120 min



How much data is needed?

- Diameters Several (5-10) brackets of data per baseline on two separate nights.
- Binaries Minimum of three brackets or observations on at least three baselines.

Imaging – Many brackets on multiple baselines during

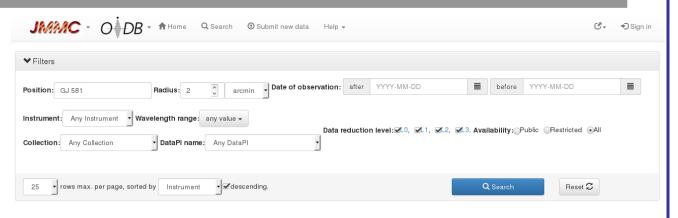
the night to fill in the sky coverage.

On the night of observation

- Observations will be carried out by CHARA staff
- Visitors are encouraged to travel to the Array to participate in the observations
 - Real-time input from PI on decisions that could impact the science objectives and priorities

Guide to planning observations available on the CHARA website:

http://www.chara.gsu.edu/observers/planning-an-observation



Do observations already exist?

- OI Database
- Query and download data (OIFITS)
- CHARA observation logs for Classic, CLIMB, VEGA only

Results

Meta-data will try to follow VO4OI proposal and Ivoa:ObsCore document (get metadata description in the associated doc 33 observations from 1 oifits files (0 private)

SELECT ALL * FROM oidb AS t WHERE (CONTAINS(POINT('ICRS', t.s_ra, t.s_dec), CIRCLE('ICRS', 229.8617625, -7.7222806, 0.03333333333333333))=1) ORDER BY instrument,

Page 1 / 2 Next Last

	(East query)							
O +	target_name	access_url	t_min	instrument_name +	wlen_min	wlen_max	nb_channels	datapi
₩	HIP_74995	-	2008-05-16T09:38:52	CLASSIC	1.96000000	2.31000000	-	Baines 🔀
Q +	HIP_74995	-	2010-03-30T08:09:35	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀
Ø +	HIP_74995	-	2010-03-30T08:31:12	CLASSIC	1.53000000	1.82000000		Boyajian 🔀
Ø +	HIP_74995	-	2010-03-30T09:44:38	CLASSIC	1.53000000	1.82000000		Boyajian 🔀
₩	HIP_74995	-	2010-03-30T10:13:26	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀

http://oidb.jmmc.fr/index.html

