User Tools

Site Tools


chara:operating_procedures

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
chara:operating_procedures [2021/12/21 08:09]
charaobs
chara:operating_procedures [2022/01/10 19:45]
charaobs
Line 70: Line 70:
 1.2 The Metrology Laser 1.2 The Metrology Laser
  
-A high-powered infrared laser is used for the delay line metrology. This is an eye hazard, so before entering the lab check to make sure the red light above the door is not on. If the laser is activated, it is a must to put on IR-protective goggles. If you are not sure, wear the goggles.+A high-powered infrared laser is used for the delay line metrology. This is an eye hazard, so before entering the lab check to make sure the red light above the door is not on. If the laser is activated, it is a must to put on IR-protective goggles. If you are not sure, wear the goggles. Please note that the METLAS gui or OPLE controller gui may not show the corect state of the laser. Hit reopen on the METLAS gui if it does not agree with the others.
  
 1.3 General Lab Rules 1.3 General Lab Rules
Line 91: Line 91:
 2.1 Starting the vacuum pump for the light pipes 2.1 Starting the vacuum pump for the light pipes
  
-Go into vacuum pump shack. Flip on power switch for pump and wait for the blower to go on in about 6 seconds. Open the valve slowly (parallel to pipe means open) Note if fan cords are plugged into wall outlet to keep pumps cool in the summer.  Note oil temperature when you start up. Oil temps below 15º C make for a labored start. There is currently a block heater on the north side of the pump and a space heater on the south side. Inform Larry or Craig if the oil temp is low and the heaters did not run to bring the temp up before starting.\\ +Go into vacuum pump shack. Flip on power switch for pump and wait for the blower to go on in about 6 seconds. Open the valve slowly (parallel to pipe means open) Note if fan cords are plugged into wall outlet to keep pumps cool in the summer. Note oil temperature when you start up. Oil temps below 15º C make for a labored start. There is currently a block heater on the north side of the pump and a space heater on the south side. Inform Larry or Craig if the oil temp is low and the heaters did not run to bring the temp up before starting.\\ 
-Go into lab building, check pressures on Vacmon display. If pressure is higher than 100 torr in any of the lines, pump those lines only one at a time. Open valve a little, then come back to open fully. When all lines to be used are well below 100 torr, open all those valves. The final pressure should be 0.5 - 1.0 Torr in each line. The pump will normally bring all 6 lines down to .2-.3 Torr. The S1 and S2 lines leak the most during the day and will read the highest in the afternoon when you return, usually between 20-30 Torr in the summer and 15-25 Torr in the winter. Note any unusual vacuum readings as they can indicate a leak beyond what is normal. Sometimes a line isn't pumped down the night before and can read higher than 30 Torr. Pump the highest ones down first as stated above.+Go into lab building, check pressures on Vacmon display. If pressure is higher than 100 torr in any of the lines, pump those lines only one at a time. Open valve a little, then come back to open fully. When all lines to be used are well below 100 torr, open all those valves. The final pressure should be 0.5 - 1.0 Torr in each line. The pump will normally bring all 6 lines down to .2-.3 Torr. The S1 and S2 lines leak the most during the day and will read the highest in the afternoon when you return, usually between 20-30 Torr in the summer and 15-25 Torr in the winter. Note any unusual vacuum readings as they can indicate a leak beyond what is normal. Sometimes a line isn't pumped down the night before and can read higher than 30 Torr. Pump down the highest ones first as stated above.
  
 2.2 Filling NIRO with LN2\\ 2.2 Filling NIRO with LN2\\
 Fill both chambers on the NIRO camera. Use the gloves and glasses provided on the shelf with the funnels and the thermos. It will normally take 1 liter of LN2 in the outer chamber and 1/2 liter in the inner chamber. Fill it until the LN2 bubbles out of the top. This camera is normally kept cool all the time, exceptions will be noted.\\ Fill both chambers on the NIRO camera. Use the gloves and glasses provided on the shelf with the funnels and the thermos. It will normally take 1 liter of LN2 in the outer chamber and 1/2 liter in the inner chamber. Fill it until the LN2 bubbles out of the top. This camera is normally kept cool all the time, exceptions will be noted.\\
 \\ \\
-Record that you filled the camera in the log book, noting time and camera filled. Note also the vacuum measurement for the MIRCX camera. If you do not observe due to weather, fire or closure, make sure someone on the mountain will fill it for you.+Record that you filled the camera in the log book, noting time and camera filled. Note also the vacuum measurement for the MIRCX camera. If you do not observe due to weather, fire or closure, inform someone on the mountain before 2:30 pm so they can fill it for you.
  
 2.3 Alignment of the light path to the telescopes\\ 2.3 Alignment of the light path to the telescopes\\
Line 137: Line 137:
 The IR mirrors on the beam samplers can be adjusted using Pico 2 controller to targets depending on which IR beam combiner is to be used.\\ The IR mirrors on the beam samplers can be adjusted using Pico 2 controller to targets depending on which IR beam combiner is to be used.\\
 \\ \\
-For CLIMB 1 and CLIMB 2, the removable 6-beam target should be placed in the clamps on the CLIMB table. This also applies to aligning CLIMB for fringe tracking for VEGA or fringe finding for PAVO.\\+For CLIMB 1CLIMB 2 or CLASSIC, the removable 6-beam target should be placed in the clamps on the CLIMB table. This also applies to aligning CLIMB for fringe finding for PAVO.\\
 \\ \\
-For MIRCX, the same target should be placed in the clamps on the MIRCX table. Place the target to the appropriate table, making sure it seats firmly in the clamps. Place the small corner cubes (labeled) on their bases at the BRTs. Make sure they seat firmly and correctly. Open IR shutters, send laser light using VISBEAMS gui to the position you want to check. Use a tablet to bring up Pico 2 gui. Click on icon or in xterm type: xpico2. Select the appropriate IR mirror for the beam you are about to adjust. For ex: S1IR. The Beam Sampler gui tells you which telescope is in the beam you are aligning. When done for all telescope to be used, remove target and place it above the CLASSIC/CLIMB table and remove corner cubes from their stands and place them to the side of the beam path. Remove the labao camera covers after you remove the corner cubes from their bases.+For MIRCX, the same target should be placed in the clamps on the MIRCX table. Place the target to the appropriate table, making sure it seats firmly in the clamps. Place the small corner cubes (labeled) on their bases at the BRTs. Make sure they seat firmly and correctly. Open IR shutters, send laser light using VISBEAMS gui to the position you want to check. Use a tablet to bring up Pico 2 gui. Click on icon in the menu or in xterm type: xpico2. Select the appropriate IR mirror for the beam you are about to adjust. For ex: S1IR. The Beam Sampler gui tells you which telescope is in the beam you are aligning. When done for all telescope to be used, remove target and place it above the CLASSIC/CLIMB table and remove corner cubes from their stands and place them to the side of the beam path. Remove the labao camera covers after you remove the corner cubes from their bases.
  
 2.5 Final steps in the lab 2.5 Final steps in the lab
Line 146: Line 146:
  
 On the Metrology table inside the lab, turn on two blue amplifiers for metrology laser (on button is labeled "line") The units will hum when on. Turn the key to ON on the laser power box to put metrology laser on standby. On the Metrology table inside the lab, turn on two blue amplifiers for metrology laser (on button is labeled "line") The units will hum when on. Turn the key to ON on the laser power box to put metrology laser on standby.
 +
 +Be sure to inform the MIRCX/MYSTIC PI that you are done in the lab and that it is ok to start any alignments or STS recording that is desired. All further steps will be outside the optical lab.
  
 2.6 Starting up the new OPLE system and Metrology (Added 08/10/21 - Chris) 2.6 Starting up the new OPLE system and Metrology (Added 08/10/21 - Chris)
  
-Finish what you are doing in the lab, go out to the computer area, turn the laser signal on, and go back to the control room to complete alignment for 30 minutes while the laser warms up.+Go out to the computer area, turn the metrology laser on, and go back to the control room to complete alignment for 30 minutes while the laser warms up.
  
 After the laser is warmed up, check sockman for old OPLE"X" servers (where X is 1-6) and remove any that may be on the sockman list. After the laser is warmed up, check sockman for old OPLE"X" servers (where X is 1-6) and remove any that may be on the sockman list.
Line 155: Line 157:
 If the OPLE System Control gui is not already running on wazoo, you can start the gui in the lab with the following command If the OPLE System Control gui is not already running on wazoo, you can start the gui in the lab with the following command
  
-ssh -Y ople /opt/bin/OPLERemCtrlApp     or from the menu system, called OPLESystem.+ssh -Y ople /opt/bin/OPLERemCtrlApp or from the menu system, called OPLESystem.
  
 The gui that appears does much of the start up sequence remotely and does not fully start everything yet. This will eventually only require fewer steps to complete. The gui that appears does much of the start up sequence remotely and does not fully start everything yet. This will eventually only require fewer steps to complete.
Line 170: Line 172:
  
 Once all 6 are solid yellow, right click on each yellow dot, and select start. This loads the control software and will turn the button green. Once all 6 are green, you need to close the gui and reopen it in the control room. Once all 6 are solid yellow, right click on each yellow dot, and select start. This loads the control software and will turn the button green. Once all 6 are green, you need to close the gui and reopen it in the control room.
- 
-Be sure to inform the MIRCX/MYSTIC PI that you are done in the lab and that it is ok to start any alignments or STS recording that is desired. 
  
 \\ \\
Line 196: Line 196:
  
 3.5 Open GUIs required for observing from the menu under GTK or the desktop icons: Open Primary OPLE gui, Open Classic, Climb1, or Climb2 gui if needed, Open LDC1 and LDC2 if PAVO program is observing. If using Lab Tiptilt, open Tiptilt GUI. Check that the pops are set by confirming the POP Overview window or Popperi gui has the same pops as the setup request email. Confirm the M10 mirrors are aligned by using the green lab alignment laser before homing the carts. The procedure is above in Section 2.3.6 M10 Alignment. 3.5 Open GUIs required for observing from the menu under GTK or the desktop icons: Open Primary OPLE gui, Open Classic, Climb1, or Climb2 gui if needed, Open LDC1 and LDC2 if PAVO program is observing. If using Lab Tiptilt, open Tiptilt GUI. Check that the pops are set by confirming the POP Overview window or Popperi gui has the same pops as the setup request email. Confirm the M10 mirrors are aligned by using the green lab alignment laser before homing the carts. The procedure is above in Section 2.3.6 M10 Alignment.
- 
-(This section is obsolete with the retiring of the old lab tiptilt)\\ 
-Establish connection between tiptilt and the telescopes. On the Control Tab on Cosmic Debris, click on [TIPTILT COMM]. Click [START JOB QUEUE] on CD to continue the Tiptilt Communication sequence. After several seconds, the telescope servers will indicate that the Socket (SOC) connection is established and turn on the tiptilt rate display. Cosmic Debris will usually display a lower rate, such as 42Hz, to indicate tiptilt is running. The servers will display 158Hz to show a proper functioning of the tiptilt system. If the connection is not established the first time, try again until CD shows rates for each telescope used. If a telescope server will not display a TT signal rate, you may need to shut it down and restart it. Once the telescope WFS's are used for tiptilt, these steps for the lab tiptilt will not be used.\\ 
-Finish setting up tiptilt GUIs. Click re-open on the Tiptilt GUI. This will update the TT labels on the TT viewing screens from B1,B2,etc to the telescope names. Click on the [SERVO CONTROL] tab on the tiptilt GUI to bring up a second window and move to screen 5 with the telescope guis. The Servo Control GUI allows you to turn ON the servo for the TT loop and make biases for individual beams (DBIAS and ZBIAS) 
  
 3.6 Metrology laser and homing the carts 3.6 Metrology laser and homing the carts
Line 244: Line 240:
 4.2 Humidity 4.2 Humidity
  
-Only open the telescopes if the humidity is steady or dropping, at 75% or below. If the roofs outside the control room are ever dripping, then the telescopes should not be opened or should be closed immediately. If when starting out, the RH is above 80%, do not open unless it drops to below 75% and stays there for at least 30 minutes. If you do open after that, be wary and watch the RH, and if it starts rising, be prepared to close. Closing up takes about 5 minutes, so be ready for that. The array operator is in charge of protecting the telescopes and makes the final decision on whether the conditions are safe to open. If the RH is low at the beginning of the night, and rises after you are already open, the array operator should inform the PI around 70-75%, and start closing between 80-85%. Other humidity warning signs are: 1) water dripping off the OPLE building (or wet spots on the asphalt straight down from the eaves); 2) cold, clammy feel to metal objects such as railings; and 3) dew forming on the parked cars. It is important to note that the humidity can rise from 50% to 80% in as little as 10 minutes, so please keep a close eye on the rate of change of the humidity plots. It can also rain or hail from small, passing clouds when the humidity is quite low, even 40% RH or lower. Operators have been surprised before by small puffy clouds in unsettled air with low humidity. If in doubt, stay closed. The HPWREN webcams are a good resource to view the bottoms of clouds. If there is any virga, the clouds are holding moisture and try to rain out. Stay closed if you see anything streaming below the clouds.+Only open the telescopes if the humidity is steady or dropping, at 75% or below. If the roofs outside the control room are ever dripping, then the telescopes should not be opened or should be closed immediately. If when starting out, the RH is above 80%, do not open unless it drops to below 75% and stays there for at least 30 minutes. Be aware that if the RH is at 100% for many hours, things will be very wet, even if the RH drops dramatically below 75%.  If you do open after that, be wary and watch the RH, and if it starts rising, be prepared to close. Closing up takes about 5 minutes, so be ready for that. The array operator is in charge of protecting the telescopes and makes the final decision on whether the conditions are safe to open. If the RH is low at the beginning of the night, and rises after you are already open, the array operator should inform the PI around 70-75%, and start closing between 80-85%. Other humidity warning signs are: 1) water dripping off the OPLE building (or wet spots on the asphalt straight down from the eaves); 2) cold, clammy feel to metal objects such as railings; and 3) dew forming on the parked cars. It is important to note that the humidity can rise from 50% to 80% in as little as 10 minutes, so please keep a close eye on the rate of change of the humidity plots. It can also rain or hail from small, passing clouds when the humidity is quite low, even 40% RH or lower. Operators have been surprised before by small puffy clouds in unsettled air with low humidity. If in doubt, stay closed. The HPWREN webcams are a good resource to view the bottoms of clouds. If there is any virga, the clouds are holding moisture and try to rain out. Stay closed if you see anything streaming below the clouds.
  
 4.3 Dust 4.3 Dust
Line 287: Line 283:
 5.1 Opening the Telescope Domes and enclosures\\ 5.1 Opening the Telescope Domes and enclosures\\
 \\ \\
-You can begin opening the telescope domes and enclosures at least two hours before sunset. The white board has times written down that the domes can be fully opened. This happens when the sun is below 35º. Before this time, the domes can be vented by partially opening them. This will help air out the domes and improve seeing at the start of the night. Hot days benefit from an earlier opening to allow the scopes to cool. Before opening the domes make sure to check the current weather conditions and the forecast to make sure conditions are safe to open and are likely to be stable as you wait for it to get dark. Also confirm that Robert or Narsi have finished the alignments in the lab or the control room as opening the domes may interupt their alignments. Call the computer room at #424 if you do not see either of them. Monitor the progress of opening the domes by turning the televisions [ON] using the telescope GUIs. Click [SPY1] to view the dome slit. In the summer, when the sun is higher overhead, use the Dome GUI for each telescope to position the domes in the anti-sun position using the RA/DEC tab and the ANTI-SUN setting for AUTODOME. This will position the dome slit opposite the sun so that you can open the slit well before sunset. You may also go to the Dome Tab on the Dome GUI, manually enter an anti-sun azimuth value from 70º-110º in the text box on the right, and press [GOTO]. This will move the dome slit to the east and opposite the sun. When the domes are facing east (and all labalignments, dichroic changes or coude alignments are finished), click [UNL SL] and [SLIT] on the Control Tab of the obsgtk GUI to open the dome slit fully. If opening very early, use [UNL SL] and [VENT] to open it halfway. Be sure to open them fully when the sun has reached 35º for maximum cooling.+You can begin opening the telescope domes and enclosures at least two hours before sunset. The white board has times written down that the domes can be fully opened. This happens when the sun is below 35º. Before this time, the domes can be vented by partially opening them. This will help air out the domes and improve seeing at the start of the night. Hot days benefit from an earlier opening to allow the scopes to cool. Before opening the domes make sure to check the current weather conditions and the forecast to make sure conditions are safe to open and are likely to be stable as you wait for it to get dark. Also confirm that Robert or Narsi have finished the alignments in the lab or the control room as opening the domes may interupt their alignments. Call the computer room at #424 if you do not see either of them. Monitor the progress of opening the domes by turning the televisions [ON] using the telescope GUIs. Click [SPY1] to view the dome slit. In the summer, when the sun is higher overhead, use the Dome GUI for each telescope to position the domes in the anti-sun position using the RA/DEC tab and the ANTI-SUN setting for AUTODOME. This will position the dome slit opposite the sun so that you can vent or open the slit well before sunset. You may also go to the Dome Tab on the Dome GUI, manually enter an anti-sun azimuth value from 70º-110º in the text box on the right, and press [GOTO]. This will move the dome slit to the east and opposite the sun. When the domes are facing east (and all lab alignments, dichroic changes or coude alignments are finished), click [UNL SL] and [SLIT] on the Control Tab of the obsgtk GUI to open the dome slit fully. If opening very early, use [UNL SL] and [VENT] to open it halfway. Be sure to open them fully when the sun has reached 35º for maximum cooling
 + 
 +Opening the M5 mirror cover also helps to cool the AO box by allowing the warm air to rise out of the box and cooler air to flow in from below the telescope.  It can be opened early while doing the alignments in the lab.
  
 [NOT YET OPERATIONAL] On the enclosure GUI, click the [OBSERVE] button to open the lower cylinders to the observe position. Wait for the slit and enclosures to open to .300 and then wait for the sun to go down. [NOT YET OPERATIONAL] On the enclosure GUI, click the [OBSERVE] button to open the lower cylinders to the observe position. Wait for the slit and enclosures to open to .300 and then wait for the sun to go down.
Line 307: Line 305:
 5.5 Slewing to a Target Using Cosmic Debris\\ 5.5 Slewing to a Target Using Cosmic Debris\\
 \\ \\
-It is typically dark enough to lock on your first star roughly 25 minutes after sunset or the time of twilight reported by Cosmic Debris. Here are instructions for slewing to a target and initializing the telescopes on a bright star at the start of the night: You may want to find a bright star near your first target to check the pointing of the telescopes and to do sky flats for the telescope DM's if needed. The [FIND STAR] button on the MAIN tab of the obsgtk is useful in finding a suitable, bright star. It will report the star name, mag, and ALT and AZ in the text window at the bottom of the gui. There is also a printed list of bright stars in order of RA in the binder on the left side of the control room desk. If your first target is bright, then you may slew to it first. Enter the HD number of the star into Cosmic Debris using the Object or Calibrator Tabs. Click the [HD] button to register the entry. (Alternatively, you could enter a CHARA NUM, IRC, HR, HD, or SAO number and click the corresponding button.) If a star or new target is not recognized by Cosmic Debris, [[:chara:trouble_shooting#adding_or_finding_a_star_in_the_chara_database|follow the procedure below for DBADD]]. Check to make sure that EL/AZ reported by Cosmic Debris are correct and safe for pointing (never point below 15-20 degrees elevation). It is recommended to initialize the telescopes on a target between 40-70 degrees elevation. Hit the WHEN button for your first star to see a plot of cart positions and when it is in delay. Enter the ideal reference cart position into the REF text window on the Cosmic Debris Control Tab. Click the [REF] button to send the reference cart position to OPLE. Slew to your first star by clicking [OBJECT], [CHECK STAR], [CALIBRATOR 1], or [CALIBRATOR 2] on Cosmic Debris (depending on which field you entered the target information). Note that these buttons will slew the telescopes AND send the carts to their positions. Verify that the telescopes are moving by checking the azimuth and elevation status in the telescope servers (the left set of numbers show the commanded EL/AZ of the target while the right set of numbers show the current location of the telescope). Also view "SPY1" to check that the telescopes and domes are moving. If the domes do not rotate, click the AUTODOME ON button to enable the domes. The telescopes will usually arrive at the elevation of the target first and then continue in azimuth until the star appears in the finder or ACQ window. If the scopes do not move, check that they are enabled. The telescope server will show RA and DEC coordinates if enabled and will show DISABLED if disabled. The update in the OPLE server will take about 20 seconds for all the carts to get the new metrology calculation. Make sure all carts are tracking to values between 0 and 44m. You might have to click [TRACK] for the reference cart on the OPLE Control Tab. The [OL] buttons should be depressed gray for ALL active scopes (including the reference cart). The [MAN] buttons should be depressed gray for the moving carts to allow the beam combiners to send manual offsets to the carts. (The [MAN] button for the reference cart should be green.) When the telescope slew finishes, check the SPY 1 to make sure that the domes are aligned with the telescope. In the ACQ window, hit [MOVE] under the TV tracking menu on the Main Tab of the Telescope GUI and then click the right star to bring the star to the cross-hairs. If the star is not in the ACQ window, go to the FIND window and do the same, then return to the ACQ window and repeat. If beacon alignments and sky flats are needed, do not center the star until the alignments are done first.+It is typically dark enough to lock on your first star roughly 25 minutes after sunset or the time of twilight reported by Cosmic Debris. Here are instructions for slewing to a target and initializing the telescopes on a bright star at the start of the night: You may want to find a bright star near your first target to check the pointing of the telescopes and to do sky flats for the telescope DM's if needed. The [FIND STAR] button on the MAIN tab of the obsgtk is useful in finding a suitable, bright star. It will report the star name, mag, and ALT and AZ in the text window at the bottom of the gui. There is also a printed list of bright stars in order of RA in the binder on the left side of the control room desk. If your first target is bright, then you may slew to it first. 
 + 
 +Enter the HD number of the star into Cosmic Debris using the Object or Calibrator Tabs. Click the [HD] button to register the entry. (Alternatively, you could enter a CHARA NUM, IRC, HR, HD, or SAO number and click the corresponding button.) If a star or new target is not recognized by Cosmic Debris, [[:chara:trouble_shooting#adding_or_finding_a_star_in_the_chara_database|follow the procedure below for DBADD]]. Check to make sure that EL/AZ reported by Cosmic Debris are correct and safe for pointing (never point below 15-20 degrees elevation). It is recommended to initialize the telescopes on a target between 40-70 degrees elevation. Hit the WHEN button for your first star to see a plot of cart positions and when it is in delay. Enter the ideal reference cart position into the REF text window on the Cosmic Debris Control Tab. Click the [REF] button to send the reference cart position to OPLE. 
 + 
 +Slew to your first star by clicking [OBJECT], [CHECK STAR], [CALIBRATOR 1], or [CALIBRATOR 2] on Cosmic Debris (depending on which field you entered the target information). Note that these buttons will slew the telescopes AND send the carts to their positions. Verify that the telescopes are moving by checking the azimuth and elevation status in the telescope servers (the left set of numbers show the commanded EL/AZ of the target while the right set of numbers show the current location of the telescope). Also view "SPY1" to check that the telescopes and domes are moving. If the domes do not rotate, click the AUTODOME ON button to enable the domes. The telescopes will usually arrive at the elevation of the target first and then continue in azimuth until the star appears in the finder or ACQ window. If the scopes do not move, check that they are enabled. The telescope server will show RA and DEC coordinates if enabled and will show DISABLED if disabled. 
 + 
 +Make sure all carts are tracking to values between 0 and 44m. You might have to click [TRACK] for the reference cart on the OPLE Control Tab. The [OL] buttons should be depressed gray for ALL active scopes (including the reference cart). The [MAN] buttons should be depressed gray for the moving carts to allow the beam combiners to send manual offsets to the carts. (The [MAN] button for the reference cart should be green.) 
 + 
 +When the telescope slew finishes, check the SPY 1 to make sure that the domes are aligned with the telescope if no star shows up in the ACQ or Finder cameras. 
 + 
 +For instructions on using the Telescope Tiptilt with beacon alignments, refer to the document [[http://docs.google.com/document/d/1TnLxWaAw42DZwh7l6_wPfe_CpIfT935_aShK0ymBX1o|WFS TT Alignment and Usage]]. 
 + 
 +To lock the star, hit [MOVE] on the Main Tab of the Telescope GUI and then click the right star to bring the star to the ACQ hole. If the star is not in the ACQ window, go to the FIND window and do the same, then return to the ACQ window and repeat.
  
 5.6 Locking Tiptilt (when using lab tiptilt) 5.6 Locking Tiptilt (when using lab tiptilt)
chara/operating_procedures.txt · Last modified: 2023/09/01 02:50 by gail_stargazer