User Tools

Site Tools


chara:operating_procedures

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
chara:operating_procedures [2022/02/09 20:38]
charaobs
chara:operating_procedures [2023/02/07 02:49]
charaobs
Line 26: Line 26:
 {{:chara:files:tiptilt_splitters_change.pdf|Tip-tilt Splitters Change}} \\ {{:chara:files:tiptilt_splitters_change.pdf|Tip-tilt Splitters Change}} \\
 {{:chara:files:beaconrecoveryinstructions.pdf|E2 AOB Dichroic Recovery Document}} \\ {{:chara:files:beaconrecoveryinstructions.pdf|E2 AOB Dichroic Recovery Document}} \\
-{{:chara:files:e1_hut_coms_recovery.pdf|E1 HuT and Cooler Communications Recovery}}+{{:chara:files:e1_hut_coms_recovery.pdf|E1 HuT and Cooler Communications Recovery}} \\ 
 +[[:chara:tunable_beacons|Tunable beacons]]\\ 
 +[[https://docs.google.com/document/d/1Ok1e0omwCD1teKlX2sW9izxA3x-IxH91jFQieh2OtSs|Six Telescope Star Tracker (STST) Manual]]
  
 {{:chara:files:twfs_faint_objects.pdf|TWFS Faint Object Instructions}} \\ {{:chara:files:twfs_faint_objects.pdf|TWFS Faint Object Instructions}} \\
Line 170: Line 172:
 All the circle indicators start out grey. All the circle indicators start out grey.
  
-After the 30 minute warmup, press the Metro button which will power up the Metrology cage, the laser repeater and the oscilloscope. When button indicator is green, you can proceed to the next step.+After a 1 minute warmup of the laser, press the Metro button which will power up the Metrology cage, the laser repeater and the oscilloscope. When button indicator is green, you can proceed to the next step.
  
 Press the Start button near the bottom. This will start up the computers, and the first stage of hardware and takes about 90 seconds to complete. The grey buttons will turn yellow with a blue icon when the computers have started up, but not loaded the drivers yet. They will then turn solid yellow when they are ready for the next step and have loaded all the drivers. (Note: E1 has often failed to start and will need to be powered on manually by the rocker switch behind the right, front cover of the E1 ople computer) Press the Start button near the bottom. This will start up the computers, and the first stage of hardware and takes about 90 seconds to complete. The grey buttons will turn yellow with a blue icon when the computers have started up, but not loaded the drivers yet. They will then turn solid yellow when they are ready for the next step and have loaded all the drivers. (Note: E1 has often failed to start and will need to be powered on manually by the rocker switch behind the right, front cover of the E1 ople computer)
Line 180: Line 182:
 === Setting up Computer in the Control Room === === Setting up Computer in the Control Room ===
  
-Updated JAN 2022 by Norm+Updated Feb 2023 by Norm
  
 3.1 General Overview of Control Room computer setup 3.1 General Overview of Control Room computer setup
Line 210: Line 212:
 <font 14px/Arial,Helvetica,sans-serif;;#333333;;white>After the carts finish homing, the ople server will say “HOMESETDONE” * To check that the carts have homed properly, click [TRACK] on the Control Tab of the OPLE</font>   GUI<font inherit/inherit;;initial;;inherit>* The cart will track to home switch at the target position of “0.000000” on the OPLE Server * Make sure the “X” lights up and stays steady under the HM column on the Primary OPLE Server for each cart you will be using. Also make sure that the errors between the laser and target position are small, (0.007µm or less is typical), when tracking at the home switch. If the errors jump when the cart is tracking on the home switch, then turn the cart [OFF], move the cart [BACK] about a meter from the home switch, turn the cart [OFF], and try clicking [TRACK] again. Please wait for each command to register on the OPLE server before clicking the next button in this sequence. If the errors do not stay near zero, the metrology laser may be out of alignment and the signal is low. Pull up a metrology signal window as shown above and confirm the signal is strong. It will look like a sine wave with an amplitude the same as the window height. If it is low, adjust it carefully with the MET2 gui in PICO 2. Get the sine wave to equal the window height. If it is ok and the problem persists, you can try to restart the respective cart’s computer/OPLE1-6 server(s). Try tracking the cart again. After checking to make sure the carts track properly, turn the carts [OFF]</font>. <font 14px/Arial,Helvetica,sans-serif;;#333333;;white>After the carts finish homing, the ople server will say “HOMESETDONE” * To check that the carts have homed properly, click [TRACK] on the Control Tab of the OPLE</font>   GUI<font inherit/inherit;;initial;;inherit>* The cart will track to home switch at the target position of “0.000000” on the OPLE Server * Make sure the “X” lights up and stays steady under the HM column on the Primary OPLE Server for each cart you will be using. Also make sure that the errors between the laser and target position are small, (0.007µm or less is typical), when tracking at the home switch. If the errors jump when the cart is tracking on the home switch, then turn the cart [OFF], move the cart [BACK] about a meter from the home switch, turn the cart [OFF], and try clicking [TRACK] again. Please wait for each command to register on the OPLE server before clicking the next button in this sequence. If the errors do not stay near zero, the metrology laser may be out of alignment and the signal is low. Pull up a metrology signal window as shown above and confirm the signal is strong. It will look like a sine wave with an amplitude the same as the window height. If it is low, adjust it carefully with the MET2 gui in PICO 2. Get the sine wave to equal the window height. If it is ok and the problem persists, you can try to restart the respective cart’s computer/OPLE1-6 server(s). Try tracking the cart again. After checking to make sure the carts track properly, turn the carts [OFF]</font>.
  
-The new ople system has a home check procedure that will give the homing error of each cart. Use the CHECK button on the ople gui to have ople check the homing accuracy. A value of a few microns is usually returned after the cart is checked. Hit ESC to clear the display in the Ople server and check the next cart. If any cart has large values above 20 microns, home the cart again and check the homing until it shows low values.+The new ople system has a home check procedure that will give the homing error of each cart. Use the CHECK button on the ople gui to have ople check the homing accuracy. A value of a few microns is usually returned after the cart is checked. If any cart has large values above 20 microns, home the cart again and check the homing until it shows low values.
  
 If using the CHAPMtoMet feature, once the OPLE server has fully started, please check sockman for CHAMPtoMet. If it is running, then MIRC is ok to start. If it is not running, log into the ople computer and run the command : CHAMPtoMet This is case sensitive. This is not the usual mode of controlling the carts. If using the CHAPMtoMet feature, once the OPLE server has fully started, please check sockman for CHAMPtoMet. If it is running, then MIRC is ok to start. If it is not running, log into the ople computer and run the command : CHAMPtoMet This is case sensitive. This is not the usual mode of controlling the carts.
Line 225: Line 227:
 3.9. Beacon Alignments 3.9. Beacon Alignments
  
-The beacons wil<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>l need to be aligned before g</font>oing on sky and are usually done after the lab is aligned and before sunset. It consists of opening the proper mirror, beacon and fiber covers, turning on the LED'and tel WFS cameras and labao displays, and aligning and focusing the red and blue LED'to the respective boxes on the tel WFS and labao.+The beacons wil<font 14px/Arial,Helvetica,sans-serif;;inherit;;inherit>l need to be aligned before g</font>oing on sky and are usually done after the lab is alignedbefore sunset and before slewing. It consists of opening the proper mirror, beacon and fiber covers, turning on the beacons and tel WFS cameras and labao displays, and aligning and focusing the red and blue beacons to the respective boxes on the tel WFS and labao. The obsgtk will display a green message at the bottom to confirm each alignment sequence has completed.
  
-In the WFS tab of the telescope GUI or the CONTROL tab of the obsgtk, turn on the red and blue LED’s, open the fiber covers, then beacon flat covers. The CAMERALINK and WFS server are now part of Bootlaunch script and the ANDOR camera power should always be on in the POWER gui. Open M5 and M7 covers.+In the WFS tab of the telescope GUI or the CONTROL tab of the obsgtk, turn on the red LED, open the fiber covers, then beacon flat covers. The CAMERALINK and WFS server are now part of Bootlaunch script and the ANDOR camera power should always be on in the POWER gui. Open M5 and M7 covers.
  
-In the WFS GUI or obsgtk, turn the cooler on (COOL ON) and open the camera shutter (SOPEN) or SHUTTER (OPEN/CLOSE), then CameraLink on (CL ON) if it is off, Camera on (CAM ON), and start TWFS display (MOVIE)For the scopes with DMs, use the POWER ON button on the WFS GUI (WFS/AO tab) to power the DM on, make sure that the DM current and temperature are displaying numbers. Press LAST FLAT to make sure that the last sky flat is loaded. If for some reason that flat is not good, going back to DEF FLAT will load the original default flat from the lab+The blue beacon is no longer an LED and has been replaced by a tunable laser.
  
-Turn on the ACQ camera in the obsgtk. Make sure that the red beacon is going through the hole in the acquisition display. If not, use Beacon UP/DOWN etc buttons on HUT gui or WFS tab on the obsgtk to move it into the hole. Look for spots to be in boxes on the WFS display. Turn on the boxes on the obsgtk (NOBOX) to see how the alignment is. The boxes may be in the default position or may be moved to position that worked better when observing. Align to whichever gives a more even illumination of spots in the boxes. As the red beacon is bright, use low gains, ie. 30-50 for the BARE dichroic or 200 for the IR dichroic, to make these alignments. If the red beacon spots on the WFS display are in the boxes, press (ALIGN BEACON) on the ALIGN tab on the TWFS GUI or (ALIGN) TELWFSon the obsgtk, wait for completion. The default maximum number of tries is 10 so if it is not aligned before it ends, repeat the step if needed.+You can start the control GUI for the blue beacons from terminal on a CHARA computer by:
  
-Turn labao camera (ON) and (START) the display. Make a dark with the MKDRK button in the LABAO section of the obsgtk. Turn on the blue beacon. The blue beacon should show spots on the LABAO display. Adjust the FPS lower if they are dim. If the spots are not in the boxes, set the M7 mirror to the default position, then use the DICHROIC buttons on the WFS tab of the telescope gui, obsgtk or HUT gtk to get them in the boxes before using the auto align of the labao. If the spots are inside the boxes, then press (SCOPE DICH) button in the ALIGN tab on the LABAO GUI or the (ALIGN) LABAOon the obsgtk to align the spots.+  * Navigate to directory: cd /chara/rainer/tunable_beacon 
 +  * start GUI: ./tubea_gtk &
  
-If the spots do not show at all in the labao, the scope dichroic is likely out of alignment. Turn on the lab laser and set it to ND 4.0Use the Dichroic controls to make the laser spots match the blue beacon spots on the ACQ camera view. If they are way off or not visible in the ACQyou can hit the button for the appropriate dichroic in the HUT gui and it will set the dichroic to its last saved default position.+In the WFS GUI or obsgtkturn the cooler on (COOL ON) and open the camera shutter (SOPEN) or SHUTTER (OPEN/CLOSE), then CameraLink on (CL ON) if it is off, Camera on (CAM ON), and start TWFS display (MOVIE)For the scopes with DMs, use the POWER ON button on the WFS GUI (WFS/AO tab) to power the DM on, make sure that the DM current and temperature are displaying numbers. Press LAST FLAT to make sure that the last sky flat is loaded. If for some reason that flat is not goodgoing back to DEF FLAT will load the original default flat from the lab.
  
-Note the focus term on both the TWFS and LABAO GUIs or obsgtks. The next steps will minimize both focus terms. Start with the (BEACON FOC) button on the ALIGN tab of the LABAO GUI or (FOCUS) LABAO: on obsgtk, wait until the procedure finishes. Then use the (FOCUS WFS) button on the ALIGN tab of the TWFS GUI or (FOCUS) TELWFS: on the obsgtk and wait for completion. Note that focusing the beacons does not work when the spots are not reasonably centered. Always get the spots well into the boxes first before focusing. Sometimes it helps to repeat the scope dichroic alignment and focus as each needs the other to be close to align well.+Turn on the ACQ camera in the obsgtk. Make sure that the beacon is going through the hole in the acquisition display. If not, use Beacon UP/DOWN etc buttons on a HUT gui or WFS tab on the obsgtk to move it into the hole. Look for spots to be in boxes on the WFS display. Turn on the boxes on the obsgtk (NOBOX) to see how the alignment is. The boxes may be in the default position or may be moved to a position that worked better when observing. Align to whichever gives a more even illumination of spots in the boxes. As the red beacon is bright, use low gains, ie. 30-50 for the BARE dichroic or 200/300 for the IR dichroic, to make these alignments. If the red beacon spots on the WFS display are in the boxes, press (ALIGN BEACON) on the ALIGN tab on the TWFS GUI or (ALIGN) TELWFS: on the obsgtk, wait for completion. The values should reach zero in both the X and Y axes. The default maximum number of tries is 10 so if it is not aligned before it ends, repeat the step if needed. 
 + 
 +Turn labao camera (ON) and (START) the display. Make a dark with the MKDRK button in the LABAO section of the obsgtk. Turn on the blue beacon. The blue beacon should show spots on the LABAO display. Adjust the FPS lower if they are dim. 100 FPS is the default, but 40 is often used for observing. Set the M7 mirror to the default position, then use the DICHROIC buttons on the WFS tab of the telescope gui, obsgtk or HUT gtk to get them in the boxes. When the spots are inside the boxes, press (SCOPE DICH) button in the ALIGN tab on the LABAO GUI or the (ALIGN) LABAO: on the obsgtk to align the spots. 
 + 
 +If the spots do not show at all in the labao, the scope dichroic is likely out of alignment. Turn on the lab laser and set it to ND 4.0. Look for additional spots in the ACQ window that are not from the beacon. Use the Dichroic controls to make the laser spots match the blue beacon spots on the ACQ camera view. Up is to the upper right in the ACQ view. If they are way off or not visible in the ACQ, you can hit the button for the appropriate dichroic in the HUT gui and it will set the dichroic to its last saved default position. 
 + 
 +Note the focus term on both the TWFS and LABAO GUIs or obsgtks. The next steps will minimize both focus terms. Start with the (BEACON FOC) button on the ALIGN tab of the LABAO GUI or (FOCUS) LABAO: on obsgtk, wait until the procedure finishes. Then use the (FOCUS WFS) button on the ALIGN tab of the TWFS GUI or (FOCUS) TELWFS: on the obsgtk and wait for completion. Note that focusing the beacons does not work when the spots are not reasonably centered. Always get the spots well into the boxes first before focusing. Sometimes it helps to repeat the scope dichroic alignment and focus as each needs the other to be close to align well and large changes in the labao focus can put the TWFS out of alignment. 
 + 
 +See the instruments page for information about starting different instruments at the beginning of the night: \\ [[:chara:instruments|Instruments: CLASSIC, CLIMB, MIRC-X/MYSTIC, PAVO]] \\  \\ [[:chara:operating_procedures|Back to Main Menu]] \\  \\  \\ **Chapter 4: **
  
-See the instruments page for information about starting different instruments at the beginning of the night:\\ 
-[[:chara:instruments|Instruments: CLASSIC, CLIMB, MIRC-X/MYSTIC, PAVO]]\\ 
-\\ 
-[[:chara:operating_procedures|Back to Main Menu]]\\ 
-\\ 
-\\ 
-**Chapter 4: ** 
 === Observing Conditions === === Observing Conditions ===
  
-\\+ \\
 4.1 Observing Conditions Intro 4.1 Observing Conditions Intro
  
Line 267: Line 271:
 4.5 Snow 4.5 Snow
  
-Because of the nature of the snow that falls on Mount Wilson, it is usually not a problem. If snow/wind conditions are such that drifting occurs, don’t open up. If there is still any snow stuck to the telescope dome itself, don’t open up. If there is snow still on the trees and branches procede with caution and make a visual assessment. Otherwise, you are free to observe (assuming the humidity, dust, and wind conditions allow it).+Because of the nature of the snow that falls on Mount Wilson, it is usually not a problem. If snow/wind conditions are such that drifting occurs, don’t open up. If there is still any snow stuck to the telescope dome itself, don’t open up. If there is snow still on the trees and branches procede with caution and make a visual assessment. Cold temperatures around freezing also can be problematic.  Several components are not rated to operate at freezing temps.  Do not open unless it is above freezing and keep an eye on the temps if they are still dropping. Otherwise, you are free to observe (assuming the humidity, dust, and wind conditions allow it).
  
 4.6 Essential Observing Links 4.6 Essential Observing Links
Line 289: Line 293:
 CHARA telescopes spy cams and weather graph ([[http://astro.gsu.edu/~weather/chara_scopes.html|http://www.astro.gsu.edu]]) Not updating. CHARA telescopes spy cams and weather graph ([[http://astro.gsu.edu/~weather/chara_scopes.html|http://www.astro.gsu.edu]]) Not updating.
  
-\\ + \\ [[:chara:operating_procedures|Back to Main Menu]]\ \ {{:chara:files:picture_6.png|Picture_6.png}} \\  \\  \\ **Chapter 5:** 
-[[:chara:operating_procedures|Back to Main Menu]]\ \ {{:chara:files:picture_6.png|Picture_6.png}}\\ +
-\\ +
-\\ +
-**Chapter 5:**+
 === Going on Sky === === Going on Sky ===
  
-5.1 Opening the Telescope Domes and enclosures\\ +5.1 Opening the Telescope Domes and enclosures \\  \\
-\\+
 You can begin opening the telescope domes and enclosures at least two hours before sunset. The white board has times written down that the domes can be fully opened. This happens when the sun is below 35º. Before this time, the domes can be vented by partially opening them. This will help air out the domes and improve seeing at the start of the night. Hot days benefit from an earlier opening to allow the scopes to cool. Before opening the domes make sure to check the current weather conditions and the forecast to make sure conditions are safe to open and are likely to be stable as you wait for it to get dark. Also confirm that Robert or Narsi have finished the alignments in the lab or the control room as opening the domes may interupt their alignments. Call the computer room at #424 if you do not see either of them. Monitor the progress of opening the domes by turning the televisions [ON] using the telescope GUIs. Click [SPY1] to view the dome slit. In the summer, when the sun is higher overhead, use the Dome GUI for each telescope to position the domes in the anti-sun position using the RA/DEC tab and the ANTI-SUN setting for AUTODOME. This will position the dome slit opposite the sun so that you can vent or open the slit well before sunset. You may also go to the Dome Tab on the Dome GUI, manually enter an anti-sun azimuth value from 70º-110º in the text box on the right, and press [GOTO]. This will move the dome slit to the east and opposite the sun. When the domes are facing east (and all lab alignments, dichroic changes or coude alignments are finished), click [UNL SL] and [SLIT] on the Control Tab of the obsgtk GUI to open the dome slit fully. If opening very early, use [UNL SL] and [VENT] to open it halfway. Be sure to open them fully when the sun has reached 35º for maximum cooling. You can begin opening the telescope domes and enclosures at least two hours before sunset. The white board has times written down that the domes can be fully opened. This happens when the sun is below 35º. Before this time, the domes can be vented by partially opening them. This will help air out the domes and improve seeing at the start of the night. Hot days benefit from an earlier opening to allow the scopes to cool. Before opening the domes make sure to check the current weather conditions and the forecast to make sure conditions are safe to open and are likely to be stable as you wait for it to get dark. Also confirm that Robert or Narsi have finished the alignments in the lab or the control room as opening the domes may interupt their alignments. Call the computer room at #424 if you do not see either of them. Monitor the progress of opening the domes by turning the televisions [ON] using the telescope GUIs. Click [SPY1] to view the dome slit. In the summer, when the sun is higher overhead, use the Dome GUI for each telescope to position the domes in the anti-sun position using the RA/DEC tab and the ANTI-SUN setting for AUTODOME. This will position the dome slit opposite the sun so that you can vent or open the slit well before sunset. You may also go to the Dome Tab on the Dome GUI, manually enter an anti-sun azimuth value from 70º-110º in the text box on the right, and press [GOTO]. This will move the dome slit to the east and opposite the sun. When the domes are facing east (and all lab alignments, dichroic changes or coude alignments are finished), click [UNL SL] and [SLIT] on the Control Tab of the obsgtk GUI to open the dome slit fully. If opening very early, use [UNL SL] and [VENT] to open it halfway. Be sure to open them fully when the sun has reached 35º for maximum cooling.
  
Line 304: Line 304:
 [NOT YET OPERATIONAL] On the enclosure GUI, click the [OBSERVE] button to open the lower cylinders to the observe position. Wait for the slit and enclosures to open to .300 and then wait for the sun to go down. [NOT YET OPERATIONAL] On the enclosure GUI, click the [OBSERVE] button to open the lower cylinders to the observe position. Wait for the slit and enclosures to open to .300 and then wait for the sun to go down.
  
-5.2 Opening telescope optics\\ +5.2 Opening telescope optics \\  \\
-\\+
 When the sun has set and before it is dark enough to slew to your first target, you can begin opening the telescope optics. Open the telescope optics one by one using the Control Tab on the Telescope GUIs: [M1 OPEN] - opens the primary mirror cover (takes ~ 3 minutes to open), [M3 OPEN], [M5 OPEN], [M7 OPEN], and [FIND OPEN] if you want the finder. Note that the W2 and E1? finder covers require two clicks of the [OPEN] button to fully open. Monitor progress of the M1 and M3 covers by using [SPY2] camera on the telescope TV screens. Wait for all covers to open. The Telescope Monitor reports the status of all mirror covers. Close and reopen the Telescope Monitor if it reads UNKNOWN for a telescope, even after hitting REOPEN. When the sun has set and before it is dark enough to slew to your first target, you can begin opening the telescope optics. Open the telescope optics one by one using the Control Tab on the Telescope GUIs: [M1 OPEN] - opens the primary mirror cover (takes ~ 3 minutes to open), [M3 OPEN], [M5 OPEN], [M7 OPEN], and [FIND OPEN] if you want the finder. Note that the W2 and E1? finder covers require two clicks of the [OPEN] button to fully open. Monitor progress of the M1 and M3 covers by using [SPY2] camera on the telescope TV screens. Wait for all covers to open. The Telescope Monitor reports the status of all mirror covers. Close and reopen the Telescope Monitor if it reads UNKNOWN for a telescope, even after hitting REOPEN.
  
-5.3 Check the OPLE carts\\ +5.3 Check the OPLE carts \\  \\
-\\+
 The OPLE carts were homed in the setup procedure. However, it is always a good idea to check to make sure the carts are tracking correctly before slewing to the first target. With all [MAN] and [OL] buttons green on the OPLE Control Tab, click [TRACK] to send the carts tracking to 0.0 (home). Make sure that the "X" lights up and stays lit under the HM column on the Primary OPLE Server and that the errors are small. If neither of these happen, then try homing the carts again. After the carts successfully track on the home switch, turn the carts [OFF]. Click the open loop [OL] button on all active carts. Click the [MAN] button on the moving carts (the MAN button for the reference cart will remain green). This will allow the beam combiners to send manual offsets to the moving carts. The OPLE carts were homed in the setup procedure. However, it is always a good idea to check to make sure the carts are tracking correctly before slewing to the first target. With all [MAN] and [OL] buttons green on the OPLE Control Tab, click [TRACK] to send the carts tracking to 0.0 (home). Make sure that the "X" lights up and stays lit under the HM column on the Primary OPLE Server and that the errors are small. If neither of these happen, then try homing the carts again. After the carts successfully track on the home switch, turn the carts [OFF]. Click the open loop [OL] button on all active carts. Click the [MAN] button on the moving carts (the MAN button for the reference cart will remain green). This will allow the beam combiners to send manual offsets to the moving carts.
  
-5.4 Turn on the telescope power\\ +5.4 Turn on the telescope power \\  \\ 
-\\ +Make sure the telescopes being used are in their stow positions. For each telescope, the elevation should be at or near 90 degrees and [SPY1] should show the end ring of the telescope framing the top of the open dome. The azimuth positions for each telescope should be: S1, S2 82.0 - E1, E2 55.9 - W1, W2 99.3.  Make sure there are no demand positions that are different from stow positions or the scopes may beging moving without being commanded. Hit STOW if any  \\ 
-Make sure the telescopes being used are in their stow positions. For each telescope, the elevation should be at or near 90 degrees and [SPY1] should show the end ring of the telescope framing the top of the open dome. The azimuth positions for each telescope should be: S1, S2 82.0 - E1, E2 55.9 - W1, W2 99.3\\ +On the Power GUI, turn on the [Tel AZ] and [Tel EL] power for each of the active scopes (green means ON). \\
-On the Power GUI, turn on the [Tel AZ] and [Tel EL] power for each of the active scopes (green means ON).\\+
 The new for 2016 stall detection function usually has each scope disabled each evening. They will need to be enabled before checking the dome servers or slewing. Make sure that the telescopes do not move away from their stow positions when enabling the scopes. If they begin moving, then click [STOW] on the Telescope Control Tab or dome gui and make sure that they arrive at the correct stow position. Check for problems with the dome servers by watching each telescope move to the precise stow position, ie. 89.990º and moving to 90.000º. If it stays off the precise stow position, the dome sever may need restarting. Click [REOPEN] on the dome gui if the clock is not the same as the CHARA time. The new for 2016 stall detection function usually has each scope disabled each evening. They will need to be enabled before checking the dome servers or slewing. Make sure that the telescopes do not move away from their stow positions when enabling the scopes. If they begin moving, then click [STOW] on the Telescope Control Tab or dome gui and make sure that they arrive at the correct stow position. Check for problems with the dome servers by watching each telescope move to the precise stow position, ie. 89.990º and moving to 90.000º. If it stays off the precise stow position, the dome sever may need restarting. Click [REOPEN] on the dome gui if the clock is not the same as the CHARA time.
  
-5.5 Slewing to a Target Using Cosmic Debris\\ +5.5 Slewing to a Target Using Cosmic Debris \\  \\
-\\+
 It is typically dark enough to lock on your first star roughly 25 minutes after sunset or the time of twilight reported by Cosmic Debris. Here are instructions for slewing to a target and initializing the telescopes on a bright star at the start of the night: You may want to find a bright star near your first target to check the pointing of the telescopes and to do sky flats for the telescope DM's if needed. The [FIND STAR] button on the MAIN tab of the obsgtk is useful in finding a suitable, bright star. It will report the star name, mag, and ALT and AZ in the text window at the bottom of the gui. There is also a printed list of bright stars in order of RA in the binder on the left side of the control room desk. If your first target is bright, then you may slew to it first. It is typically dark enough to lock on your first star roughly 25 minutes after sunset or the time of twilight reported by Cosmic Debris. Here are instructions for slewing to a target and initializing the telescopes on a bright star at the start of the night: You may want to find a bright star near your first target to check the pointing of the telescopes and to do sky flats for the telescope DM's if needed. The [FIND STAR] button on the MAIN tab of the obsgtk is useful in finding a suitable, bright star. It will report the star name, mag, and ALT and AZ in the text window at the bottom of the gui. There is also a printed list of bright stars in order of RA in the binder on the left side of the control room desk. If your first target is bright, then you may slew to it first.
  
Line 332: Line 328:
 Locking Tiptilt using the telescope WFS Locking Tiptilt using the telescope WFS
  
-Before locking the star, align the twfs to the red beacon, align the blue beacon to the labao, focus the labao and then focus the twfs. Turn off the red LED and you are ready to lock the star.+Before locking the star, align the twfs to the red beacon, align the blue beacon to the labao, focus the labao and then focus the twfs as shown before. Turn off the red LED and you are ready to lock the star.
  
-To lock the star, hit [MOVE] on the Main Tab of the Telescope GUI and then click the right star to bring the star to the ACQ hole. Turn on the TWFS tiptilt and DM servo on scopes that have it. Make sure the twfs tiptilt spots window show green dots that show the servo is tracking. Turn on the labao servo and auto M7 on all scopes.+To lock the star, hit [MOVE] on the Main Tab of the Telescope GUI and then click the right star to bring the star to the ACQ hole. Turn on the TWFS tiptilt and DM servo on scopes that have it. Make sure the twfs tiptilt spots window show green dots that show the servo is tracking. Turn on the labao servo and DM AUTO on all scopes. All values should move to zero or near zero when the servos are on.
  
-5.6 Locking Tiptilt (when using lab tiptilt)+Special additional alignments when IR flux is low 
 + 
 +If the flux is low on telescopes on pop 5 or 4, there can be a misalignment of the IR starlight with respect to the blue beacon due to low elevation and the long distance to the lab. If this is the case, follow these steps to improve the flux. 
 + 
 +On the obsgtk, set the beacon step size to 222 or 333.  Click the Left button while watching the MIRCX flux plot or the STST image display. If watching the MIRCX flux plot, look for increases in flux after a click or two.  Allow the DM AUTO function to adjust the blue beacon after each step by not moving the beacon out of the boxes.  Remap the fiber to see if the flux is further increased when the labao has recentered the beacon.  If using the STST, move the image flux towards the reference position set by the STS or CHARA beams. 
 + 
 +5.6 Locking Lab Tiptilt (only used in special cases)
  
 With the star aligned with the acquisition ticks, check to make sure there are counts on the TipTilt server or the white plots in the TT windows have condensed. On the Main Tab of the Telescope GUI, click [TIP/TILT] under the Pointing Servo menu. If this button is not pressed, then the green dots on the tiptilt windows will drift and eventually drop TT lock. The [STAR ACQUIRED] button on Cosmic Debris also starts the Tiptilt servo for all active scopes with one push of a button. On the Tiptilt Servo Control GUI, turn tiptilt [ON] for each telescope or use the [TT ON] button on Cosmic Debris to perform this function for all active scopes. With the star aligned with the acquisition ticks, check to make sure there are counts on the TipTilt server or the white plots in the TT windows have condensed. On the Main Tab of the Telescope GUI, click [TIP/TILT] under the Pointing Servo menu. If this button is not pressed, then the green dots on the tiptilt windows will drift and eventually drop TT lock. The [STAR ACQUIRED] button on Cosmic Debris also starts the Tiptilt servo for all active scopes with one push of a button. On the Tiptilt Servo Control GUI, turn tiptilt [ON] for each telescope or use the [TT ON] button on Cosmic Debris to perform this function for all active scopes.
Line 342: Line 344:
 Acquisition Laser Alignment if the star does not lock in Tiptilt Acquisition Laser Alignment if the star does not lock in Tiptilt
  
-Set VISBEAMS to correct beams. Put the Neutral Density Filter on ND 3.0 using the Laser_Filters GUI. If the beacon and fiber covers are open, use the SHUTTERS GUI to open the laser shutter and the corresponding B1-B6 shutters. You can also put in the corner cube with the [CCIN] button. You will see at least two stars and two laser spots in the ACQ window. There is a reflection, hence two images of each. The desired spots are the right ones. Use the "ORIGIN" paddle on the ADJUST Tab of the Telescope GUI or obsgtk to align the TV cross-hairs to coincide with the laser spot. Close the laser shutter and the B1-B6 shutters. * Move the corner cube out with the [CCOUT] button on the Main tab or Control tab on the telescope gui if you used it. It will take about 10 seconds to move out of the the beam. Hit [MOVE] under the TV tracking menu on the Main Tab of the Telescope GUI and then click the right star to bring the star to the cross-hairs. If it doesn't center well, click [MOVE] again and then the star again until the TipTilt plots show that it is getting light. Lock Tiptilt as shown above. Maintain the ACQ laser alignment during the night by adjusting the crosshairs to the star after locking Tiptilt.\\ +Set VISBEAMS to correct beams. Put the Neutral Density Filter on ND 3.0 using the Laser_Filters GUI. If the beacon and fiber covers are open, use the SHUTTERS GUI to open the laser shutter and the corresponding B1-B6 shutters. You can also put in the corner cube with the [CCIN] button. You will see at least two stars and two laser spots in the ACQ window. There is a reflection, hence two images of each. The desired spots are the right ones. Use the "ORIGIN" paddle on the ADJUST Tab of the Telescope GUI or obsgtk to align the TV cross-hairs to coincide with the laser spot. Close the laser shutter and the B1-B6 shutters. * Move the corner cube out with the [CCOUT] button on the Main tab or Control tab on the telescope gui if you used it. It will take about 10 seconds to move out of the the beam. Hit [MOVE] under the TV tracking menu on the Main Tab of the Telescope GUI and then click the right star to bring the star to the cross-hairs. If it doesn't center well, click [MOVE] again and then the star again until the TipTilt plots show that it is getting light. Lock Tiptilt as shown above. Maintain the ACQ laser alignment during the night by adjusting the crosshairs to the star after locking Tiptilt. \\  \\
-\\+
 5.7 Finishing the slew sequence 5.7 Finishing the slew sequence
  
 The Job Queue ends with slewing to the star. The stars are acquired manually. Click [Star Acquired] on the Control Tab on Cosmic Debris to update the target information listed at the top of the Cosmic Debris window. This also turns on all the telescope TT servos, the same function as the TIPTILT button on each telescope gui. Initialize the pointing of the telescopes on your first target by going to the MAIN tab on the obsgtk and clicking the red [INIT] button. Make sure you are on the correct star before initing the scopes or you will have problems. This may have to be repeated if the pointing drifts during the night. This will allow more consistent and accurate pointing for this part of the sky. You can now point to your first science target, calibrator, alignment star or fringe finder and begin the alignment sequence for the beam combiner and then start searching for fringes. The Job Queue ends with slewing to the star. The stars are acquired manually. Click [Star Acquired] on the Control Tab on Cosmic Debris to update the target information listed at the top of the Cosmic Debris window. This also turns on all the telescope TT servos, the same function as the TIPTILT button on each telescope gui. Initialize the pointing of the telescopes on your first target by going to the MAIN tab on the obsgtk and clicking the red [INIT] button. Make sure you are on the correct star before initing the scopes or you will have problems. This may have to be repeated if the pointing drifts during the night. This will allow more consistent and accurate pointing for this part of the sky. You can now point to your first science target, calibrator, alignment star or fringe finder and begin the alignment sequence for the beam combiner and then start searching for fringes.
  
-\\ +5.8 Monitoring MIRCX/MYSTIC observing 
-[[:chara:operating_procedures|Back to Main Menu]]\\ + 
-\\ +When running MIRCX/MYSTIC, the operator may want to have the windows open to follow the fiber mapping, scanning for fringes and data recording. The windows can be opened with the command mircx_launch_all_guis on a desktop terminal. It will open 5 windows for each combiner, but they do not need to all be open. Close what you don't want to monitor. The fiberexplorer, gdt, rtd, and super_gtk windows are most helpful. 
-**Chapter 6:**+ 
 + \\ [[:chara:operating_procedures|Back to Main Menu]] \\  \\ **Chapter 6:** 
 === Procedure for Shutting Down at the End of the Night === === Procedure for Shutting Down at the End of the Night ===
  
-6.1 End Night Sequence Introduction\\ +6.1 End Night Sequence Introduction \\  \\
-\\+
 The End Night sequence on Cosmic Debris can be used to end observing and stow the telescopes, carts, and domes and close the mirror covers. It will only stow the active scopes, carts, and domes, so if there are other scopes open, make them active in the Configure tab of CD or stow them manually with the procedure below, 6.4 Manually Stowing the Telescopes The End Night sequence on Cosmic Debris can be used to end observing and stow the telescopes, carts, and domes and close the mirror covers. It will only stow the active scopes, carts, and domes, so if there are other scopes open, make them active in the Configure tab of CD or stow them manually with the procedure below, 6.4 Manually Stowing the Telescopes
  
 6.2 Start the end night sequence on Cosmic Debris 6.2 Start the end night sequence on Cosmic Debris
  
-Clear the job queue on Cosmic Debris. Press the [END NIGHT] button on Cosmic Debris. This will close all the shutters, stow the active telescopes, close the telescope M1 and M3 mirror covers, send the active OPLE carts to the back switch, close the OPLE socket, and archive the accumulated data for the night. NOTE: The End Night Sequence will NOT close the dome slits so these will have to be closed manually after all of the telescope M1 mirror covers are closed. It will also not send inactive carts back. Update the configuration with any inactive scopes to make sure those carts can be sent back manually as well. The Cosmic Debris status window will indicate when the end night sequence is complete. You can close Cosmic Debris after you have sent out the Observing Report. * If you use the End Night sequence to stow the telescopes and close mirror covers, remember to do a visual check of all telescopes using the check list in step 6.4 below before turning off the power for the telescopes and closing the telescope GUIs.\\ +Clear the job queue on Cosmic Debris. Press the [END NIGHT] button on Cosmic Debris. This will close all the shutters, stow the active telescopes, close the telescope M1 and M3 mirror covers, send the active OPLE carts to the back switch, close the OPLE socket, and archive the accumulated data for the night. NOTE: The End Night Sequence will NOT close the dome slits so these will have to be closed manually after all of the telescope M1 mirror covers are closed. It will also not send inactive carts back. Update the configuration with any inactive scopes to make sure those carts can be sent back manually as well. The Cosmic Debris status window will indicate when the end night sequence is complete. You can close Cosmic Debris after you have sent out the Observing Report. * If you use the End Night sequence to stow the telescopes and close mirror covers, remember to do a visual check of all telescopes using the check list in step 6.4 below before turning off the power for the telescopes and closing the telescope GUIs. \\ 
-A list of observed targets and an Observing Report is now automatically generated as part of the End Night Sequence. Click [END NIGHT], then [REPORT] on Cosmic Debris to generate this automatic report email. The report will include the headings: PI name, Program, Observers, Baselines, Weather and Seeing data, and targets on which data was collected. Complete the Observers and Baselines entries, add comments to the bottom of the report and put your name at the end. Check with the observer for completeness of the target list. Some observers will send you comments of their own. Add those to the report. Cut and paste this into an email to CHARA Obs and send it. To archive the report, you must also hit the SEND button at the bottom of the report to save it.\\ +A list of observed targets and an Observing Report is now automatically generated as part of the End Night Sequence. Click [END NIGHT], then [REPORT] on Cosmic Debris to generate this automatic report email. The report will include the headings: PI name, Program, Observers, Baselines, Weather and Seeing data, and targets on which data was collected. Complete the Observers and Baselines entries, add comments to the bottom of the report and put your name at the end. Check with the observer for completeness of the target list. Some observers will send you comments of their own. Add those to the report. Cut and paste this into an email to CHARA Obs and send it. To archive the report, you must also hit the SEND button at the bottom of the report to save it. \\ 
-Note: Classic, CLIMB, FLUOR and PAVO will automatically send the target information to Cosmic Debris after data is acquired. For MIRCx, the [DATA ACQUIRED] button can be clicked on Cosmic Debris after each data sequence is finished or it can be done by the MIRCx operator from his or her station.\\ +Note: Classic, CLIMB, FLUOR and PAVO will automatically send the target information to Cosmic Debris after data is acquired. For MIRCx, the [DATA ACQUIRED] button can be clicked on Cosmic Debris after each data sequence is finished or it can be done by the MIRCx operator from his or her station. \\  \\ 
-\\ +If you have other technical information to send out that is not related to the nightly observing runs, use our other lists that pertain to the subject at hand. \\  \\ 
-If you have other technical information to send out that is not related to the nightly observing runs, use our other lists that pertain to the subject at hand.\\ +In addition to paper observing logs, CHARA offers the option of using electronic logs. At minimum, we request that you fill out the date, UT time, target name, and any comments that would be relevant for subsequent reduction. This information will be useful for building and maintaining the CHARA archive: \\
-\\ +
-In addition to paper observing logs, CHARA offers the option of using electronic logs. At minimum, we request that you fill out the date, UT time, target name, and any comments that would be relevant for subsequent reduction. This information will be useful for building and maintaining the CHARA archive:\\+
 CHARA Electronic Logs CHARA Electronic Logs
  
-6.3 Shutdown Checklist Introduction\\ +6.3 Shutdown Checklist Introduction \\  \\
-\\+
 It is important to make sure the array gets shutdown properly at the end of the night. This includes stowing the telescopes, closing the mirror covers and domes, powering down equipment, and covering the cameras. Each day many employees are working on various systems from any number of different locations around the Array. Any CHARA equipment left on or exposed, can cause damage to other systems or be damaged itself. It is critical that the array is shut down consistently from night to night. Listed below are the procedures for shutting down the array. Please make sure that the Array is secure at the end of the night. It is important to make sure the array gets shutdown properly at the end of the night. This includes stowing the telescopes, closing the mirror covers and domes, powering down equipment, and covering the cameras. Each day many employees are working on various systems from any number of different locations around the Array. Any CHARA equipment left on or exposed, can cause damage to other systems or be damaged itself. It is critical that the array is shut down consistently from night to night. Listed below are the procedures for shutting down the array. Please make sure that the Array is secure at the end of the night.
  
 6.4 Manually stowing the telescopes 6.4 Manually stowing the telescopes
  
-Unlock the tiptilt beams using the Tiptilt servo control GUI. Turn the telescope TVs to SPY1 so that you can watch the telescopes and domes stow. On the Control Tab of the telescope GUI, click [STOW]. This will send the telescope and dome to the stow position. When the telescopes reach an elevation above 50 degrees, you can begin closing the mirror covers. M1 CLOSE, M3 CLOSE, M5 CLOSE, M7 CLOSE, Finder CLOSE Note that W2 and E1? finder covers and the W1 and W2 M7 covers need a second click to close. Visually inspect the telescopes using SPY2 to make sure that the mirror covers close properly. Check the Telescope Monitor for mirror cover status. After the M1, M3 and finder mirror covers finish closing, close the dome slits by clicking [SLIT CLOSE] on the telescope control tab for each telescope dome that is open. Close the dome enclosures by clicking [CLOSE] on the cylinder GUI. Watch that each reads .000 or .001 when closed. Check that the telescopes moved to their stow positions in EL and AZ: EL 90.0 deg, AZ 55.9 deg for E1 and E2, EL 90.0 deg, AZ 99.3 deg for W1 and W2, EL 90.0 deg, AZ 82.0 deg for S1 and S2. Turn off the power for [TEL AZ], [TEL EL] and [TIP/TILT] for the active scopes using the Power GUI and disable the scopes using the dome gui or obsgtk. Visually check all telescopes in the spycams to make sure all covers and slits are closed. Leave the telescope GUIs open until the End Night Sequence is finished. (Cosmic Debris will turn on the TVs and the Spy Cam 2 during the End Night Sequence.) If the humidity is high, make sure that the heaters are turned on.+Unlock the tiptilt beams using the Tiptilt servo control GUI. Turn the telescope TVs to SPY1 so that you can watch the telescopes and domes stow. On the Control Tab of the telescope GUI, click [STOW]. This will send the telescope and dome to the stow position. When the telescopes reach an elevation above 50 degrees, you can begin closing the mirror covers. M1 CLOSE, M3 CLOSE, M5 CLOSE, M7 CLOSE, Finder CLOSE Note that W2 and E1? finder covers and the W1W2, and S2 M7 covers need a second click to close. Visually inspect the telescopes using SPY2 to make sure that the mirror covers close properly. Check the Telescope Monitor for mirror cover status. After the M1, M3 and finder mirror covers finish closing, close the dome slits by clicking [SLIT CLOSE] on the telescope control tab for each telescope dome that is open. Close the dome enclosures by clicking [CLOSE] on the cylinder GUI. Watch that each reads .000 or .001 when closed. Check that the telescopes moved to their stow positions in EL and AZ: EL 90.0 deg, AZ 55.9 deg for E1 and E2, EL 90.0 deg, AZ 99.3 deg for W1 and W2, EL 90.0 deg, AZ 82.0 deg for S1 and S2. Turn off the power for [TEL AZ], [TEL EL] and [TIP/TILT] for the active scopes using the Power GUI and disable the scopes using the dome gui or obsgtk. Visually check all telescopes in the spycams to make sure all covers and slits are closed. Leave the telescope GUIs open until the End Night Sequence is finished. (Cosmic Debris will turn on the TVs and the Spy Cam 2 during the End Night Sequence.) If the humidity is high, make sure that the heaters are turned on.
  
 6.5 Send the OPLE carts to the back of the rails 6.5 Send the OPLE carts to the back of the rails
Line 391: Line 390:
 Press the shutdown button on the OPLE System Control gui, wait until all 6 dots are grey, press the Metro button, and wait until it is grey, turn off the metrology laser. Press the shutdown button on the OPLE System Control gui, wait until all 6 dots are grey, press the Metro button, and wait until it is grey, turn off the metrology laser.
  
-6.7 Shutting down the Lab\\ +6.7 Shutting down the Lab \\  \\ 
-\\ +Go to the lab and close the vacuum valves for all telescope lines (valve handle turned perpendicular to the tube). Go outside to the pump shack and close the vacuum valve. Then shut off the vacuum pump. Note any unusual noises or excessive oil temps (above 54 C) reported by the thermometer. Let Craig, Victor or Steve know of any concerns. Lock the padlock. \\ 
-Go to the lab and close the vacuum valves for all telescope lines (valve handle turned perpendicular to the tube). Go outside to the pump shack and close the vacuum valve. Then shut off the vacuum pump. Note any unusual noises or excessive oil temps (above 54 C) reported by the thermometer. Let Larry know of any concerns. Lock the padlock.\\ +Go inside the lab with booties: Turn off the silver box, then black box for NIRO and replace the NIRO camera cover if used. Turn off the key for the green alignment laser and turn the power switch off. Turn off Pico 3 controller above the tiptilt camera. Turn off the blue amplifiers for the metrology laser (button is labeled "line") * Turn off the key for the metrology laser and place it on top of the laser box. Shut off lights when exiting the lab building. Return your booties to the basket if good or to the trash if they have holes in them. Make sure all doors are closed as you leave.
-Go inside the lab with booties: With the dim lights on, put the tiptilt cover back on the tiptilt camera. Turn off the silver box, then black box for NIRO and replace the NIRO camera cover if used. Turn off the key for the green alignment laser and turn the power switch off. Turn off Pico 3 controller above the tiptilt camera. Turn off the blue amplifiers for the metrology laser (button is labeled "line") * Turn off the key for the metrology laser and place it on top of the laser box. Shut off lights when exiting the lab building. Return your booties to the basket if good or to the trash if they have holes in them. Make sure all doors are closed as you leave.+
  
-6.8 Odds and ends.\\ +6.8 Odds and ends. \\  \\ 
-\\ +Back in the Control Room: If you run into any problems during the shutdown procedures, send an email to charamnt or directly to Craig and Steve so that they can work to resolve any problems that need to be resolved promptly. Please feel free to record any details in the Observers Notebook or email Tech Report to specified groups or individual employees. Lock front and side doors of Operations Center if you are the last one in the building. Close OPLE building doors; they tend to stick open, please push firmly. \\  \\ [[:chara:operating_procedures|Back to Main Menu]]
-Back in the Control Room: If you run into any problems during the shutdown procedures, send an email to charamnt or directly to Craig and Steve so that they can work to resolve any problems that need to be resolved promptly. Please feel free to record any details in the Observers Notebook or email Tech Report to specified groups or individual employees. Lock front and side doors of Operations Center if you are the last one in the building. Close OPLE building doors; they tend to stick open, please push firmly.\\ +
-\\ +
-[[:chara:operating_procedures|Back to Main Menu]]+
  
  
chara/operating_procedures.txt · Last modified: 2023/09/01 02:50 by gail_stargazer