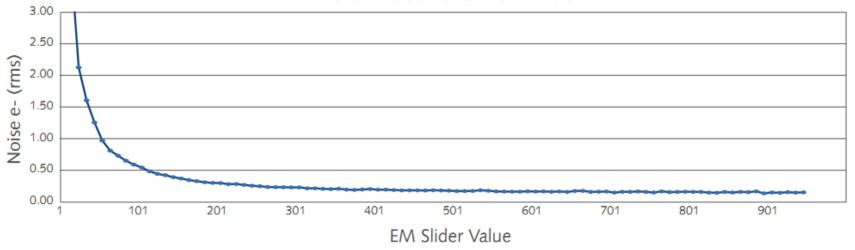
CHARA AO Cameras

Criteria

- S/N at low-light level
- Frame rate
- Operating system
- Cooling method
- Data interface
- Cost

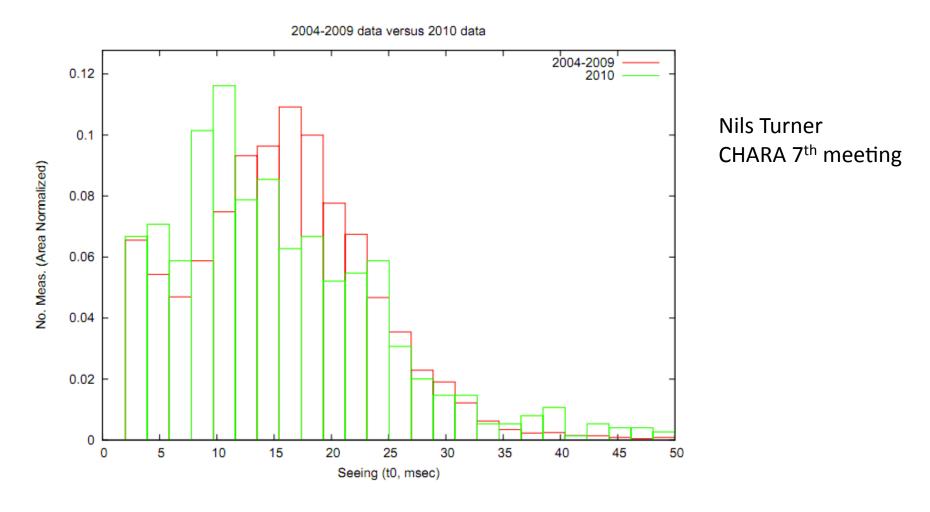
•


Company	Model
Andor	Neo
	Ixon860
	Ixon897
Princeton And Photometrics	ProEM
	PIXIS512
	Cascade128
	Evolve 128
	Quantem
PCO	Edge
Hamamatsu	ImageM

Main Goal: Faint objects

EMCCD vs. sCMOS

	EMCCD	sCMOS
Read noise (e-)	<1 with EM gain	1 - 2
Dark current (e-/pixel/s)	<~0.01 @ -70C	0.03 @ -40C


Read Noise vs. Slider Value

Actual data, not theoritical From Photometrics

Company	Model
Andor	Neo
	Ixon860
	Ixon897
Princeton And Photometrics	ProEM
	PIXIS512
	Cascade128
	Evolve 128
	Quantem
PCO	Edge
Hamamatsu	ImageM

Seeing condition vs. Frame Rate

Frame rate has to be faster than a few hundreds per second

Company	Model
Andor	Neo
	Ixon860
	Ixon897
Princeton And Photometrics	ProEM
	PIXIS512
	Cascade128
	Evolve 128
	Quantem
PCO	Edge
Hamamatsu	ImageM

Operating system

- Linux supported: Ixon860, Ixon897 and Cascade 128, ImageM (3rd party, untested)
- Windows supported: Evolve 128

Company	Model
Andor	Neo
	Ixon860
	Ixon897
Princeton And Photometrics	ProEM
	PIXIS512
	Cascade128
	Evolve 128
	Quantem
PCO	Edge
Hamamatsu	ImageM ?

Ixon860 vs. Ixon897

	Ixon860	Ixon897
Pixel array	128 X 128	512 X 512
Pixel size (micro)	24 X 24	16 X 16
Well capacity (e-)	250,000	160,000
Frame rate (fps)	513 (standard)	395 (cropped)
Data interface	PCI, PCIe	USB2.0 in a few month, double the frame rate

Ixon 897 will probably cost more than Ixon 860

Company	Model
Andor	Neo
	Ixon860
	Ixon897
Princeton And Photometrics	ProEM
	PIXIS512
	Cascade128
	Evolve 128
	Quantem
PCO	Edge
Hamamatsu	ImageM ?

Data interface

	Data rate
USB2.0	480Mbs
Fireware 1394	800Mbs
Gigabit Ethernet interface	1Gbs
PCIe	>4Gbs
Camera link	>5Gbs

Data rate needed:

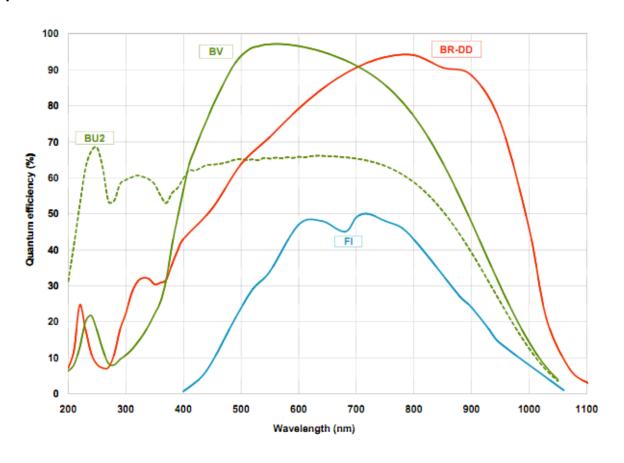
128^2 * 16 * 1000 = 262Mbs

128 X 128 array size

2bytes for each pixel

1000fps

Andor (Ixon860) vs. Princeton (Cascade128)


- 1. The software worked well with Linux, was open source and easily ported to an RT environment.
- 2. In heat generation tests, Andor came out as the lowest heat generator, the Princeton device was a toaster.
- 3. Latency of the interface was lowest for the Andor device.

Note: Info on this slide is taken from Theo's notes

	Ixon860	Cascade128
sensor	e2V CCD60, back-illuminated	e2v CCD60; back-illuminated
# of pixels	128 X 128	128 X 128
Pixel size (micron)	24 X 24	24 X 24
Binning	4X, 2X	4X, 2X
Readout noise (e-)	48@10MHz <1 with EM gain	65@12MHz <1 with EMgain
Dark Current (e-/pixel/s)	0.002 @ -85C	<=1 @ -30C
Well capacity (e-)	250,000	250,000
Frame rata(fps)	513 @ 128 X 128	510 @ 128 X 128
QE	>90% at peak ~47% at 900nm	>90% at peak ~47% at 900nm
Cooling	TE, air cooled to -85C	TE to -30C
Humidity	<70%	<80%
Data interface	PCI, PCIe	PCI

Deep depletion

- Deep depletion has good QE at red
- However, e2v doesn't produce EMCCD with deep depletion, also the frame rate is less than 30fps

Cascade 128 vs. Evolve 128

Evolve 128 is a upgraded version of cascade 128 with several nice features:

- Linear scale for the gain
- Light source inside for gain calibration
- Bias level is fixed when changing frame rate

But Evolve doesn't have Linux driver...