
Notes on AO Servo Loop

Theo ten Brummelaar
July 10th 2018

This is a short note to make sure we are on the same page concerning the servo loop being used in
the AO code. This is not a statement of why this loop is necessarily the best one, it may not be, but
just a description of what has been implemented so far.

So, as taken from the Wikipedia page on PID loops we have:

where in our case the demand position r(t) is always 0, that is, a flat wavefront. The statement that
we should start with a “pure integral”, means that the Kp and Kd terms are zero and the Ki term is
non-zero. This is 100% correct if the Plant Process does nothing and 𝑦 𝑡 = 	𝑢(𝑡).

The problem is that the code as it currently stands calculates a change in actuator position, not an
absolute position. The plant process is 𝑦 𝑡 = 	 𝑢 𝑡 	𝑑𝑡,*

+ or in other words 𝑢 𝑡 = 	 ,-(*)
,*

 and so
we have a velocity servo not a position servo and I think this is where the confusion has arisen.

The currently implemented steps of the servo for each actuator are

1. Calculate the error 𝑒/ using the spot positions and the reconstructor matrix.

2. Using this error calculate how much we need to move the actuator ∆𝐴/	to correct for this
error using ∆𝐴/ = 	𝐾3	𝑒/ −	𝐾,	∆𝐴/56 +	𝐾8	Σ8:+8:/𝑒8.

3. The final actuator position is then 𝐴/	 = 	𝐴/56	 +	∆𝐴/.

If we write this in analogue space, we have the differential equation

𝑑𝐴
𝑑𝑡

= 	𝐾3𝑒 𝑡 −	𝐾,	
𝑑𝐴 𝑡
𝑑𝑡

+ 𝐾8 	 𝑒 𝑡 𝑑𝑡
*

+
.

In my mind this is the appropriate way of looking at this as each actuator is constantly moving,
and so we need to control its velocity in order to have it arrive at the correct position before the
next error measurement. If we integrate this term and only consider the first (proportional) term
we have

𝐴 𝑡 = 𝐾3 	 𝑒 𝑡 𝑑𝑡
*

+

a “pure” integral servo. Pure-gain in a velocity servo is pure-integral in a position servo and there
is no disagreement about what we should do, just a difference in nomenclature.

There is another part in the code, not related to this discussion. The change in actuator position in
cycle 𝑛 is, as before, given by

∆𝐴/ = 	𝐾3	𝑒/ −	𝐾,	∆𝐴/56 +	𝐾8	Σ8:+8:/𝑒8.

However, the final actuator position is then calculated using

𝑃/ = 	𝐾>𝐴/56 +	∆𝐴/	 + 𝐹

where we have now added a memory term 𝐾>, a zero point defined by the default flat 𝐹, and we
always set 𝐴+ = 0.0.

If we set 𝐾> = 1.0 we have (Someone tell me if I’m wrong here!) the PID velocity control loop
discussed above. If we set 0.0	 < 	𝐾> 	< 1.0 we have something that in the absence of any error
terms will “relax” eventually to the default flat 𝐹.

In the code we have the defaults 𝐾> = 0.9, 𝐾3 = 0.5, 𝐾8 = 0.0, and 𝐾, = 0.0. This, apart from
the memory part, is indeed a pure-integral servo as JB describes it, and a pure gain velocity servo
as I (and the GUI) describe it.

