The Intergalactic Medium (IGM)

- Constituents WHIM, CGM, ICM, etc.
- Baryon budget
- Why is most of the IGM so hot?

(Millenium Simulation, Springel et al. 2005, Nature, 435, 629)

We live in a ACDM (accelerating) Universe.

Evidence:

- Accelerating expansion of the Universe (Type Ia SN).
- Abundances of H, Deuterium, He, and Li.
- Structure of Cosmic Microwave Background (CMB).
- Agreement between models and observations (e.g., SDSS survey) of large-scale structure.

Baryon Budget at $z \approx 0$

(Nicastro+, 2016, Astronomische Nachrichten, 338, 281)

Up to ~1/2 of the baryons seen in the CMB are missing in today's Universe → likely hiding in Warm/Hot IGM (WHIM) and or CGM.

1) Lya Forest (Diffuse IGM)

QSO1422+23, z(emis) = 3.62

- Seen as narrow Lyα absorption lines in quasars at z_{abs} < z_{emis}.
- Intervening low-column clouds in the IGM ($N_H \approx 10^{14} 10^{15} \text{ cm}^{-2}$)
- $T \approx 10^4$ K, Z (metallicity) ≈ 0.1
- Discrete IGM clouds photoionized at the epoch of reionization at 6 < z < 20 (150 million to one billion years after the Big Bang).

Gunn-Peterson Effect (Trough)

• Total absorption of Lyman absorption at z = 6.2 (and lack of trough at z = 5.8) indicates end of reionization epoch at $z \approx 6$.

2) Circumgalactic Medium (CGM)

(Peterson, 1997, An Introduction to AGN, p. 201)

- "Metal" lines seen in quasars at $z_{abs} < z_{emis}$ from intervening galaxies.
- Also known as "damped Lya" systems due to their higher columns
- Low-ionization (C II, Si II, etc.) lines from galactic disks.
- High-ionization lines (C IV, N V, O VI, etc.) from galactic halos (CGM)
- CGM is photo- & collisionally ionized: $T \approx 10^{4.5-6}$ K, $n_H \approx 10^{-4}$ to $^{-6}$ cm $^{-3}$

CGM Dynamics

Tumlinson+, 2017, ARAA, 55, 389

CGM Observations

Observing techniques

Tumlinson+, 2017, ARAA, 55, 389

Hot CGM – Milky Way

(Gupta, 2012, ApJ, 756, L8.)

- Chandra X-ray spectra of AGN show O VII absorption at $z \sim 0$.
- $T \approx 10^6$ K, $n(H) \approx 10^{-4}$ cm⁻³ \rightarrow hot gas around MW up to ~100 kpc.
- Most other galaxies in groups likely have hot halos.
- Is there a substantial intragroup medium? (hiding some of the missing mass)

Stephan's Quintet – Compact Group

- NGC 7318B creates shock front in intragroup medium (https://chandra.harvard.edu/photo/2009/stephq/)
- Unclear how much gas there is outside of shock.

3) Intracluster Medium (ICM)

- Virgo: nearest rich cluster at ~ 16 Mpc
- Home of cD galaxy (and AGN) M87 in core
- Relatively loose and irregular in shape
- Kinematics: infalling galaxies at edges still growing

Chandra X-ray Image

HST Visible Image

Intracluster Medium (ICM)

- X-ray observations: hot ($T = 10^7$ to 10^8 K) intracluster gas
 - 3 to 6 times the stellar mass.
 - Cooling is primarily due to bremsstrahlung radiation.
 - Likely comes from WHIM (cosmic web).
 - \rightarrow ongoing collapse of large-scale structure on these scales
- $Z \approx 1/3 Z_{\odot} \rightarrow$ enrichment from galactic outflows
- Ram pressure as galaxies move through cluster gas
 - Strips neutral gas in spirals, hot gas in E's; pushes back radio lobes

3C 465 in Abell 2634

VLA 4.9 GHz image

Hot Gas in Giant Ellipticals (and cD Galaxies)

- X-ray missions (Einstein, ROSAT) discovered hot ($T \approx 10^7$ K) gas in nearby giant Es (now studied with Chandra and XMM).
- Gas is almost completely ionized cooled by bremsstrahlung, H- and Helike emission lines from recombination.
- Fueled by ICM.

Cooling curve for gas with solar composition and $n_{\rm H} = 1 \text{ cm}^{-3}$

solid – luminosity density, dashed – cooling time

Why is the gas so hot?

- Gas clouds are on random orbits like their progenitor stars
- Collisions between gas clouds:

$$kT = m_p \sigma^2 \rightarrow T = 6 \times 10^6 \left(\frac{\sigma}{300 \text{ km s}^{-1}}\right)^2 \text{ K}$$

- The cooling time is: $t_{cool} \approx n_{H}^{-1} T^{\frac{1}{2}}$ at these high temperatures.
- At centers of giant E's, the gas may be dense (n_H = 0.1 cm⁻³) enough to cool in ~ 1 Gyr → new star formation in core
- However, cooling flows are rarely observed.
 → gas likely heated by AGN feedback.
- Above equation applies to gas and galaxies moving in ICM of rich clusters at ~1000 km s⁻¹.

 \rightarrow Gas Temperatures up to ~10⁸ K

ASCA X-ray Spectrum of Hot Gas around M87

(Sparke & Gallagher, p. 272)

H and He-like emission lines in addition to bremmstrahlung
Z = 0.5 Z_☉ → material ejected by RG and AGB stars (1-2 M_☉ yr¹ per 10¹⁰ L_☉)

XRISM Observations of ICM

X-ray Spectrum of Perseus Galaxy Cluster Measured by XRISM Resolve

4) Warm/Hot Intergalactic Medium (WHIM)

- Predicted by cosmological simulations to have web-like structure at $T = 10^{5-7}$ K.
- Still streaming into galaxy clusters and groups at $z \approx 0$.
- Likely contains $\sim 1/2$ of the baryons in the Universe.

Warm WHIM – Detected FUSE + HST/STIS observations of quasar PG 1259+593

(Richter+ 2004, ApJS, 153, 165

- WHIM warm phase: $T \approx 10^{5-5.5}$ K, detected in O VI absorption
- 15% of baryons in Universe
- Above: 6 intervening (IGM) detections of O VI

Hot WHIM – Detected?

XMM-Newton spectrum of blazar 1ES 1553+113

- WHIM hot phase: $T \approx 10^6$ K, detected in O VII absorption
- 9% 40% of baryons in Universe (could be part or all of missing mass)
- WHIM in very hot phase (T $\approx 10^7$ K) uncertain.
- Large area X-ray telescopes needed for O VII, O VIII absorption, emission