

The Acceleration of Gravity (g)

• Galileo showed that g is the same for all falling objects, regardless of their mass.

Apollo 15 demonstration

Momentum and Force

• Momentum = mass × velocity

tion Inc. publishing as Ad

- A force changes momentum, which generally means an acceleration (change in velocity)
 Force = mass × acceration
- Rotational momentum of a spinning or orbiting object is known as **angular momentum** = mass × velocity × radius

Thought Question: Is there a net force? Y/N

- 1. A car coming to a stop.
- 2. A bus speeding up.
- 3. An elevator moving up at constant speed.
- 4. A bicycle going around a curve.
- 5. A moon orbiting Jupiter.

Thought Question: Is there a net force? Y/N

- 1. A car coming to a stop. Y
- 2. A bus speeding up. Y
- 3. An elevator moving at constant speed. N
- 4. A bicycle going around a curve. Y
- 5. A moon orbiting Jupiter. Y

How is mass different from weight?

- Mass the amount of matter in an object
- Weight the *force* that acts upon an object

Thought Question On the Moon:

- A. My weight is the same, my mass is less.
- B. My weight is less, my mass is the same.
- C. My weight is more, my mass is the same.
- D. My weight is more, my mass is less.

ion Inc. publishing as As

Why are astronauts weightless in space? Image: the space of the space

Thought Question On the Moon:

- A. My weight is the same, my mass is less.
- B. My weight is less, my mass is the same.
- C. My weight is more, my mass is the same.
- D. My weight is more, my mass is less.

How did Newton change our view of the universe?

tion Inc. publishing as Ad

- Realized the same physical laws that operate on Earth also operate in the heavens
 - one universe
- Discovered laws of motion and gravity
- Much more: Experiments with light; first reflecting telescope, calculus...
- Sir Isaac Newton (1642-1727)

What are Newton's three laws of motion?

C 2006 T

Newton's first law of motion: An object moves at constant velocity unless a net force acts to change its speed or direction.

Newton's third law of motion:

For every force, there is always an *equal and opposite* reaction force.

Newton's second law of motion

Force = mass \times acceleration

Thought Question: Is the force the Earth exerts on you larger, smaller,

or the same as the force you exert on it?

- A. Earth exerts a larger force on you.
- B. I exert a larger force on Earth.
- C. Earth and I exert equal and opposite forces on each other.

<text>

Conservation of Angular Momentum

angular momentum = mass x velocity x radius

- The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it
- Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely

Where do objects get their energy?

- Energy makes matter move.
- Energy is conserved, but it can:
 - Transfer from one object to another
 - Change in form

- In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts.
- A contracting cloud converts gravitational potential energy to thermal energy.

Conservation of Energy

- Energy can be neither created nor destroyed.
- It can change form or be exchanged between objects.
- The total energy content of the Universe was determined in the Big Bang and remains the same today.

hing as As

What determines the strength of gravity?

The Universal Law of Gravitation:

- 1. Every mass attracts every other mass.
- 2. Attraction is *directly* proportional to the product of their masses.
- 3. Attraction is *inversely* proportional to the *square* of the distance between their centers.

Newton and Kepler's Third Law

His laws of gravity and motion showed that the relationship between the *orbital period* and *average orbital distance* of a system tells us the *total mass* of the system.

Examples:

hing as Ad

- Earth's orbital period (1 year) and average distance (1 AU) tell us the Sun's mass.
- Orbital period and distance of a satellite from Earth tell us Earth's mass.

• Orbital period and distance of a moon of Jupiter tell us Jupiter's mass.

Newton's Version of Kepler's Third Law $p^2 = \frac{a^3}{(M_1 + M_2)}$ OR $M_1 + M_2 = \frac{a^3}{p^2}$ p = orbital period (years) a = average orbital distance (AU) $(M_1 + M_2)$ = sum of object masses (M_{Sun})

