

The Acceleration of Gravity

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, $g \approx 10 \mathrm{~m} /$ s^{2} : speed increases $10 \mathrm{~m} / \mathrm{s}$ with each second of falling.

How do we describe motion?

The Acceleration of Gravity (g)

- Galileo showed that g is the same for all falling objects, regardless of their mass.

Apollo 15 demonstration

Momentum and Force

- Momentum $=$ mass \times velocity
- A force changes momentum, which generally means an acceleration (change in velocity)
Force $=$ mass \times acceration
- Rotational momentum of a spinning or orbiting object is known as angular momentum $=$ mass \times velocity \times radius

Thought Question:

Is there a net force? Y/N

1. A car coming to a stop. Y
2. A bus speeding up. Y
3. An elevator moving at constant speed. N
4. A bicycle going around a curve. Y
5. A moon orbiting Jupiter. Y

Thought Question:

Is there a net force? Y / N

1. A car coming to a stop.
2. A bus speeding up.
3. An elevator moving up at constant speed.
4. A bicycle going around a curve.
5. A moon orbiting Jupiter.

How is mass different from weight?

- Mass - the amount of matter in an object
- Weight - the force that acts upon an object

Thought Question
 On the Moon:

A. My weight is the same, my mass is less.
B. My weight is less, my mass is the same.
C. My weight is more, my mass is the same.
D. My weight is more, my mass is less.

How did Newton change our view of the universe?

Thought Question

On the Moon:
A. My weight is the same, my mass is less.
B. My weight is less, my mass is the same.
C. My weight is more, my mass is the same.
D. My weight is more, my mass is less.

- Realized the same physical laws that operate on Earth also operate in the heavens
- one universe
- Discovered laws of motion and gravity
- Much more: Experiments with light; first reflecting telescope, calculus...

Newton's second law of motion

Force $=$ mass \times acceleration

Thought Question:

Is the force the Earth exerts on you larger, smaller, or the same as the force you exert on it?
A. Earth exerts a larger force on you.
B. I exert a larger force on Earth.
C. Earth and I exert equal and opposite forces on each other.

Thought Question:
Is the force the Earth exerts on you larger, smaller, or the same as the force you exert on it?
A. Earth exerts a larger force on you.
B. I exert a larger force on Earth.
C. Earth and I exert equal and opposite forces on each other.

What keeps a planet rotating and orbiting the Sun?

Conservation of Momentum

- The total momentum of interacting objects cannot change unless an external force is acting on them

Conservation of Angular Momentum

angular momentum $=$ mass X velocity X radius

- The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it
- Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely

Where do objects get their energy?

- Energy makes matter move.
- Energy is conserved, but it can:
- Transfer from one object to another
- Change in form

Thermal Energy:

the collective kinetic energy of many particles (for example, in a rock, in air, in water)

Temperature is a measure of the average kinetic energy of the many particles in a substance.

Gravitational Potential Energy

- In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts.
- A contracting cloud converts gravitational potential energy to thermal energy.

[^0]
Gravitational Potential Energy

- On Earth, depends on:
- object's mass (m)
- strength of gravity (g)
- distance object could potentially fall

Mass-Energy

Mass itself is a form of potential energy

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

- A small amount of mass can release a great deal of energy - Concentrated energy can spontaneously turn into particles (for example, in particle accelerators)

Conservation of Energy

- Energy can be neither created nor destroyed.
- It can change form or be exchanged between objects.
- The total energy content of the Universe was determined in the Big Bang and remains the same today.

How does Newton's law of gravity extend
Kepler's laws?

- Kepler's first two laws apply to all orbiting objects, not just planets
- Ellipses are not the only orbital paths. Orbits can be:
- Bound (ellipses)
- Unbound
- Parabola
- Hyperbola

What determines the strength of gravity?

The Universal Law of Gravitation:

1. Every mass attracts every other mass.
2. Attraction is directly proportional to the product of their masses.
3. Attraction is inversely proportional to the square of the distance between their centers.

Newton and Kepler' s Third Law

His laws of gravity and motion showed that the relationship between the orbital period and average orbital distance of a system tells us the total mass of the system.

Examples:

- Earth' s orbital period (1 year) and average distance (1 AU) tell us the Sun's mass
- Orbital period and distance of a satellite from Earth tell us Earth's mass.
- Orbital period and distance of a moon of Jupiter tell us Jupiter's mass.

How do gravity and energy together allow us to understand orbits?

More gravitational energy;
Less kinetic energy

Less gravitational energy;
More kinetic energy

- Total orbital energy (gravitational + kinetic) stays constant if there is no external force
- Orbits cannot change spontaneously.


```
Newton's Version of Kepler' s Third
            Law
    \(p^{2}=\frac{a^{3}}{\left(M_{1}+M_{2}\right)} \quad\) OR \(\quad M_{1}+M_{2}=\frac{a^{3}}{p^{2}}\)
\(p=\) orbital period (years)
\(a=\) average orbital distance (AU)
\(\left(M_{1}+M_{2}\right)=\) sum of object masses \(\left(M_{\text {Sun }}\right)\)
```


Changing an Orbit

So what can make an object gain or lose orbital energy?

- Friction or atmospheric drag
- A gravitational encounter.

How does gravity cause tides?

- Moon' s gravity pulls harder on near side of Earth than on far side
- Difference in Moon's gravitational pull stretches Earth
- How often do we have tides? Twice a day

Tidal Friction

- Tidal friction gradually slows Earth rotation (and makes Moon get farther from Earth).
- Moon once orbited faster; tidal friction caused it to "lock" in synchronous rotation.
- Eventually, the Earth' s rotation will lock into the Moon's orbit/rotation periods.

[^0]:

