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ABSTRACT

x Andromedae, an early-type star that hosts a directly imaged low-mass companion, is expected to be oblate due to
its rapid rotational velocity (vsini=~162kms '). We observed the star with the CHARA Array’s optical beam
combiner, PAVO, measuring its size at multiple orientations and determining its oblateness. The interferometric
measurements, combined with photometry and this v sin i value are used to constrain an oblate star model that
yields the fundamental properties of the star and finds a rotation speed that is ~85% of the critical rate and a low
inclination of ~30°. Three modeled properties (the average radius, bolometric luminosity, and equatorial velocity)
are compared to MESA evolution models to determine an age and mass for the star. In doing so, we determine an
age for the system of 47f% Myr. Based on this age and previous measurements of the companion’s temperature,
the BHAC15 evolution models imply a mass for the companion of 225 M;.
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1. INTRODUCTION

The vast majority of exoplanets have been discovered with
indirect methods such as studying the radial velocity variations
induced on the host star or measuring how much light from the
host star is blocked by the transiting planet (Winn &
Fabrycky 2015). However, the spectral lines of typical early-
type stars are rotationally broadened, making them not
conducive to the precise radial velocity measurements
necessary for planetary detection and confirmation. In fact,
only 15 substellar mass companions have been discovered
around early-type stars (Hartman et al. 2015 and references
therein). Five of these were discovered using the transit method
and the remaining 10 were discovered with direct imaging.
Accurate age estimates of stars that harbor directly imaged
companions are necessary to determine the masses of the
companions because these masses are all dependent on
evolution models designed for low-mass objects that cool with
age (e.g., Baraffe et al. 2003).

The B9IVn star, kK Andromedae A (hereafter, k And A; other
identifiers include 19 And, HD 222439, HIP 116805, HR 8976,
and Téng Shé ershiyi—The Twenty First Star of Flying
Serpent) is the hottest (T ~ 11,200 K) and most massive (M
~2.8 M) star known to host a directly imaged companion
(hereafter, < And b), discovered by Carson et al. (2013). The
host star is rapidly rotating with a v sin i of ~160kms™'
(Glebocki & Gnacinski 2005; Royer et al. 2007) and is at a
distance of 51.6 £ 0.5 pc (van Leeuwen 2007). Zuckerman
et al. (2011) consider it to be a member of the 30 Myr Columba
association. Carson et al. (2013) adopted this age for k And A
and used DUSTY cooling models (Baraffe et al. 2003) to
determine the mass of x And b to be 12.87%0 My,p. Hinkley
et al. (2013, hereafter H13) estimated the age of the system to
be 220 + 100 Myr, ~7 times older than the age of Columba by
comparing log(g) and T estimates to the predictions of stellar

models. At this age, the mass of x And b would be SOf}g Myyp,
much larger than the traditional boundary of ~13 My, between
planets and brown dwarfs (Spiegel et al. 2011; Molliere and
Mordasini 2012; Bodenheimer et al. 2013).

Other studies estimate a range of ages for x And A.
Bonnefoy et al. (2014) compare the star’s position on an My,
versus B — V color-magnitude diagram to the predictions of
the Ekstrom et al. (2012) evolution models and find an age
<250 Myr. David & Hillenbrand (2015, hereafter DH15) use
high-precision uvby(3 photometry to estimate the 7.y and
log(g) of a large sample of early-type stars, including x And A,
and estimate ages by comparing these values to the predictions
of the evolution models of Bressan et al. (2012) and Ekstrom
et al. (2012). With their Bayesian analysis, they find a 95%
confidence interval of 29-237 Myr for x And A and argue that
it is not coeval with Columba. Alternatively, the Bayesian
analysis of Brandt & Huang (2015) suggests that coevality with
Columba cannot be ruled out.

To more accurately determine the properties of £ And A,
including its age, we present interferometric observations of s
And A taken with the PAVO beam combiner on the CHARA
Array. Using the model described in Jones et al. (2015,
hereafter J15), we determine various fundamental parameters of
x And A, including its radius, temperature, inclination, and
luminosity, and based on comparisons with the MESA
evolution model (Paxton et al. 2011, 2013), determine its
mass and age. This procedure was validated using coeval
members of the Ursa Major Moving Group (UMMG), showing
that the MESA evolution models are appropriate for dating
rapidly rotating stars by finding coeval ages between rapidly
and slowly rotating members of the UMMG and by estimating
an age for the group in agreement with the admittedly large
range of age estimates for the group. With an age for the x And
system, we estimate a mass for the companion by using the
BHACIS5 evolution models (Baraffe et al. 2015).
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Table 1
Observing Log

Cal HD Cal Diameter (mas) Baseline # Observations # Visibilities Date

222304 0.263 £ 0.026 S2-E2 4 92 2012 Dec 21
220885 0.230 + 0.023 S2-E2 4 92 2012 Dec 21
222304 0.263 £ 0.026 WI-E1l 1 23 2013 Aug 2
220885 0.230 + 0.023 S1-El 2 46 2013 Aug 2
220885 0.230 + 0.023 S1-El 3 69 2013 Aug 3
220885 0.230 £ 0.023 W1-S1 3 69 2013 Aug 3
222304 0.263 £ 0.026 WI1-S1 3 69 2013 Aug 3
220885 0.230 £ 0.023 E1-W2 4 92 2013 Aug 5

2. OBSERVATIONS AND DATA REDUCTION
2.1. Visibilities

Observations of x And A were made using the Precision
Astronomical Visible Observations (PAVO) beam combiner on
the Center for High Angular Resolution Astronomy (CHARA)
Array (Ireland et al. 2008; ten Brummelaar et al. 2005). The
CHARA Array is an optical interferometer made up of six 1-m
telescopes arranged in a Y-shaped configuration with a
maximum baseline of 331 m. Each telescope is named with a
letter designating its arm (“S”—south, “E”—east, “W”—west)
and a number designating its place on the arm (“1”—outer,
“2”—inner). PAVO was used in its two-telescope mode and
produces 23 spectrally dispersed squared-visibility measure-
ments for each observation over a wavelength range of
0.65-0.79 ym. In total, we made 24 observations yielding
552 spectrally dispersed squared-visibility measurements over
four nights using five different baselines in order to measure its
oblateness.

We observe two different calibrator stars (HD 222304 and
HD 220885) shortly before and after (within ~30 minutes) our
observations of k And A and by doing so, we can account for
how the atmosphere dampens the measured visibilities of the
target star (Roddier 1981p. 281; Boden 2007). We predict that
these calibrator stars have small angular diameters (<0.27 mas)
based on fitting photometric energy distributions to measured
photometry. We reduce and calibrate the data with the
reduction pipeline of Ireland et al. (2008). Table 1 lists the
dates observations were made, how many observations were
made, the baselines used, and the calibrator used.

2.2. Photometry

We take advantage of the ample photometric observations of
+ And A that have been made over the years, using photometry
from the following sources: Johnson UBV from Mermilliod
(2006); Stromgren uvby from Hauck & Mermilliod (1997);
Johnson JK from Selby et al. (1988); and UV photometry with
wavelengths ranging from 1500 to 3300 A from Thompson
et al. (1978) and Wesselius et al. (1982). IUE spectro-
photometry (Boggess et al. 1978) exists for x And A that we
do not use, but matches to our model spectral energy
distribution (SED) and the broadband UV photometry that
we use. Following arguments from J15, we adopt an
uncertainty of 0.03 mag for all photometric values.

3. MODELING OF STELLAR PROPERTIES
3.1. Oblate Star Model

Because of x And A’s rapid rotation (vsini=161.6+
22.2kms '; Glebocki & Gnacinski 2005; Royer et al. 2007),
the limb-darkened disk traditionally used to model interfero-
metric data is insufficient. Rapid rotation causes a star to have a
radius at the equator larger than its radius at the pole. The ratio
between the equatorial and polar radii can be as high as 1.5
when the star is rotating at its breakup velocity (van
Belle 2012). The thicker equatorial bulge of a rapid rotator
results in the equator being both cooler and fainter than the
pole. This effect, known as gravity darkening, is correlated
with the local surface gravity (von Zeipel 1924a, 1924b).

We account for both the oblateness and gravity darkening of
+ And A by using the model of J15, which compares observed
photometry and interferometric visibilities to values generated
by a model star that incorporates the effects of solid-body
rotation, known as a “Roche model” (van Belle 2012;
Roche 1873). The model photometry is calculated by
integrating ATLAS model SEDs (Castelli & Kurucz 2004)
over the visible surface of the star, convolving the integrated
SED with the appropriate filter bandpasses, and converting the
resulting fluxes into magnitudes. To calculate model visibi-
lities, we generate an image of the model at the observed
bandpasses. The model visibilities are calculated by taking the
Fourier transform of this image and sampling the transform at
the observed spatial frequencies.

The model and parameters calculated by the model are
described in detail in J15, but we note three slight differences
here. One such difference is that we use ATLAS model SEDs
for this work rather than the PHOENIX model SEDs used
in J15 (Husser et al. 2013), since they extend to effective
temperatures hotter than 12,000 K. Another difference is that
we only use the gravity-darkening law of Espinosa Lara &
Rieutord (2011) because the data are not sensitive to
differences in gravity-darkening laws and this law is supported
by previous interferometric observations.

The final difference is in how uncertainties are calculated.
Under the assumption that the uncertainties in the free
parameters are Gaussian and that the model parameters are
linear, we use the following prescription to determine uncertain-
ties in the free parameters: because the x> values determined by
the models are larger than 1, for each data set (photometry and
visibilities), we scale the x> (both reduced and unreduced) such
that the reduced > is 1. The free parameters are then varied
individually until the scaled, unreduced x? increases by 1. This
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gives two sets of uncertainties for the free parameters—one for
the photometry and one for the visibilities, with the exception of
the position angle, which is only probed by the visibilities. The
final uncertainty in each free parameter is determined by adding
the two uncertainties in quadrature under the assumption that the
visibilities and photometry are independent. The uncertainty in
the position angle is determined only by comparison with the
visibilities. These uncertainties are then propagated to determine
the uncertainties in the derived parameters. We caution the
reader that these uncertainties are statistical and do not account
for systematic uncertainties such as errors in the model spectra,
gravity-darkening law, etc. The coevality of oblate and non-
oblate A-stars in the UMMG, determined using this model (J15),
suggests that these systematic uncertainties do not dominate the
errors.

Figure 1 illustrates the best-fitting model by showing the
modeled visibilities and photometry as well as the modeled
photosphere overlaid with approximate radius measurements at
various orientations. Using four different metallicities (justified
below), the best-fit modeled properties are listed in rows 3—7 of
Table 2, and the properties derived from these are in rows 8-20
of Table 2.

3.2. Stellar Evolution Models

We take the average radius (R,,.), total bolometric
luminosity (Ly), and equatorial rotation velocity (V.) shown
in Table 2 and use MESA evolution models (Paxton
et al. 2011, 2013) to determine the age and mass of x And A
by comparing the modeled values to MESA’s predictions for
given masses, ages, and initial rotation rates. MESA models are
used because they can account for the rapid rotation of x And
A. The uncertainties in the mass and age are based on
propagated uncertainties in stellar properties (J15).

One systematic source of uncertainty that is difficult to
account for in this analysis is the metallicity of the evolution
model. There are several reasons to suspect that the subsolar
surface abundance of x And A (e.g., [M/H]=—-0.324+0.15;
Wau et al. 2011) does not trace its internal abundance. First, the
surface abundances of A- and B-stars within populations
believed to be chemically homogeneous span a broad range.
Moreover, there is evidence that photospheric abundances are
anti-correlated with projected rotational velocity (v sin i), becom-
ing distinctively subsolar (e.g., < —0.30) when projected
rotational velocities exceed ~150km/s (e.g., Takeda &
Sadakane 1997; Varenne & Monier 1999). Thus, there is reason
to suspect that the internal abundance of x And A is more metal-
rich than is observed in its photosphere. Finally, as emphasized
by H13, the Galaxy has not recently produced many stars that are
this metal-poor. To quantify this, we consider the sample of open
clusters with metallicity measurements assembled in Chen et al.
(2003). These 77 clusters have a mean metallicity of 0.00 dex
and a standard deviation of 0.14 dex; the most metal-poor cluster
among them has a metallicty of —0.34dex. Given these
considerations, we adopt a solar metallicity ([M/H] = 0.00 dex,
Z =0.0153, Caffau et al. 2011) for x And A, with an uncertainty
of 0.14 dex. Nevertheless, we also consider a metallicity of
[M/H] = —0.28 dex as a 20 extremum in our analysis. Figure 2
shows the average radius and temperature of x And A overlaid
with mass tracks and isochrones from the MESA evolution
models for solar metallicity that have been interpolated to the
modeled rotational velocity.
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Figure 1. Top: observed (red circles) and best-fit model visibilities (blue
squares) vs. spatial frequencies for the solar metallicity model. Middle:
observed (red circles) and best-fit model (blue squares) photometric fluxes
versus wavelength for the solar metallicity model. The modeled SED is shown
in gray. Bottom: the photosphere of the best-fitting model of x And A. The
black points represent a grid of colatitudes and longitudes on the near side of
the model. The blue circles represent a radius fitted to each individual visibility
at the appropriate baseline orientation observed. The data are duplicated at 180°
orientation.
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Table 2

JONES ET AL.

Model Results

Properties of x And A

Internal [M/H] +0.14 0.00° —0.14 —0.28
Internal Z 0.0211 0.0153 0.0111 0.0080
Modeled Properties
Equatorial Radius, R, (Ro) 23315060 2303387 2.32650053 2.366* 03
Equatorial Velocity, V, (kms™") 354.8172, 283.8*13¢ 322.5H133 37664114
Stellar Inclination, i (°) 263719 30.1%54 27.0123 25923
Polar Temperature, T, (K) 12195+13 12050744 12167534 1234874,
Polar Position Angle, 1 (°) 69.6°33 63.4733 69.3193 72.8193

Properties Derived from Oblate Star Model

Gravity Darkening, (3 0.18 Egﬁg(l)%
0.947+9%%
1.827-9078

Angular Rotation Rate, w
Polar Radius, R, (Rg)

0202338 0185343 0166343
0.854 10921 0.921799%} 0.978+0:508
195949933 1.878+393 176159038

Average Radius, Ry, (Ro)” 2.026°99% 210970932 2062393 1.983003

Average Angular Diameter, 6,y, (mas)® 0.365+9:019 0.3807 5998 0.37125:95¢ 0.357+5:90¢

Equatorial Temperature, T, (K) 96627113 103427384 9933+33¢ 922217

Average Temperature, Tpye (K)° 11250413 1132778 112907%! 11307335

Polar Surface Gravity, log(g,) (cgs) 4.373700% 429670913 431579918 435570917

Average Surface Gravity, log(g,,,) (cgs)® 4.20740:0% 4.174509013 4.16470:00 416970014

Equatorial Surface Gravity, log(g,) (cgs) 3.8131090 3.9680:028 3.84879032 3.593*+003

vsini (kms™") 157.4735, 142.27)3 146.27149 164.7+134

Total Luminosity, L, (L) 55.2153%] 62.607553 58.357§3¢ 53.507173

Apparent Luminosity, Lypp (Lo) 71174322 72014147 72494787 72994124

Visibility x2 12.99 13.23 13.01 12.85

Photometry x* 9.68 8.92 8.74 8.75

Total x* 22.67 22.15 21.75 21.60
Properties Derived from MESA Evolution Models

Age (Myr) Below ZAMS 47+)¢ 74724 82732

Mass (M) Below ZAMS 2768402 2.659+09%7 2.558+0043

Properties of x And b

T.(K)* 2040 + 60

Mass (My,,) N/A 22%6 3013 31+
Adopted System Properties using [M/H] = 0.00

Age (Myr) 47:2“7)

Mass of A (Mg) 2.768% 310

Mass of b (M)) 2248

Notes.
# We adopt as our final results those from the solar metallicity models.

The average quantities presented here are averaged across the entire surface of the model star.
¢ The average angular diameter is determined using the average radius and the distance.

4 From H13.

4. RESULTS AND DISCUSSION
4.1. The Properties of v And A

We use the model discussed in Section 3 to determine the
age of k And A for four different internal metallicities ([M/H]
= +0.14, 0.0, —0.14, and —0.28) corresponding to the +1-, 0-,
—1-, and —20 uncertainties in [M/H], respectively. For the
solar metallicity model, we find a radius for the host star
ranging from 2.303003¢ R at the equator to 1.95970:03; Ry, at

the pole with an average of 2.10973932 R, This oblateness is,

in part, due to an equatorial velocity of 283.8f}g;‘11 kms™!,

which corresponds to an angular rotation rate relative to the
critical rate, w, of 0.85470:02% and which with the modeled
inclination of 30°1734 gives a modeled v sin i of
1422733 kms™". Our modeled effective temperature ranges
from 12050433 K at the pole to 103427754 K at the equator with
an average of 11327143' K, and together with the modeled
radius profile, yield a total luminosity of 62.607553 L and

apparent luminosity of 72.01f,1,15'é7 Ls. We model an average
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Figure 2. Solid lines show the evolution in radius and effective temperature according to the mass tracks of the MESA evolution models for masses ranging from 2.7
to 3.1 M, The dashed lines are isochrones showing the radius and effective temperatures of stars with this range of masses at ages ranging from 7 to 200 Myr. Both
the mass tracks and isochrones were calculated for solar metallicity and interpolated to the modeled rotation velocity of the star.

surface gravity (log(g,,)) of 417473913 dex, which is only

slightly larger than previous measurements of the star’s log(g)
ranging from 3.8 to 4.1 dex (Fitzpatrick & Massa 2005; Wu
et al. 2011; Bonnefoy et al. 2014).

The age and mass we determine using the best-fitting model
with a solar metallicity are 4771} Myr and 2.768704% Mo,
respectively. This young age is due, in large part, to the low
inclination (~30°) and large rotation velocity (~85% critical),
which implies that the apparent luminosity is brighter than the
total luminosity because of the effects of gravity darkening and
which also changes where the zero-age main sequence (ZAMS)
lies on the HR diagram.

Most of our modeled parameters show broad agreement
between the four different internal metallicities tested; how-
ever, the age and the mass show a significant correlation with
metallicity (e.g., a lower metallicity corresponds to an older age
and a lower mass). Given how strongly the internal metallicity
affects the modeled mass and age of the host star, we adopt the
ages and masses determined at the 1o uncertainties in the
metallicity as the bounds to our final uncertainties in the age
and mass. The supersolar metallicity model ((M/H] = +0.14)
has a radius and luminosity below the ZAMS, so we adopt the
age of the ZAMS, ~7Myr, as the lower bound of the
uncertainty in the age. Given the trend of decreasing mass of
~0.1 Mg for every lo decrease in metallicity, we adopt an
upper bound of the uncertainty in our mass to be 0.1 M, Thus,
our final estimate of the age and mass of x And A is 47"3) Myr
and 2.768" 0100 M, respectively.

We note that a more recent age estimate of the Columba
association by Bell et al. (2015) finds it to be 42f2 Myr, which
is in excellent agreement with our age estimate for x And A.
Despite its outlying Galactic Y position with respect to

Columba (2.70; H13), the agreement in age suggests that its
kinematic association with young nearby groups should be
reconsidered.

4.2. A Comparison to Previous Age Estimates

H13 use a variety of methods to estimate the age of x And A,
finding ages ranging from ~50 to 400 Myr. Their adopted age
of 220 £ 100 Myr is based on a comparison between the
predictions of the Geneva evolution models (Ekstrom
et al. 2012) that account for a rotation rate of w = 0.4 and
the log(g) (4.10dex) and T (11,366 K) measured by
Fitzpatrick & Massa (2005). This age estimate is significantly
older than both the traditionally adopted age of the Columba
association (30 Myr) and our estimate (47ﬁ$ Myr). HI3 do
note that such a young age is possible if the host star is rapidly
rotating (Ve/ Ve > 0.95) with an very low orientation (~22°),
which is what we have found with this work.

DHI15 use Stromgren photometry of Hauck & Mermilliod
(1997) to determine a log(g) of 4.35 £ 0.14dex and T of
11903 + 405K. From this, they interpolate between the
isochrones generated by the evolution models of Bressan et al.
(2012) and Ekstrom et al. (2012) to estimate an age of 16 Myr.
Superseding this interpolated estimate, they use a more
thorough Bayesian approach and find a 95% confidence
interval of 29-237 Myr with a median age of 150 Myr.

In an attempt to determine how much the choice of evolution
model affects the estimated age, we compare the log(g) and T
values used by both H13 and DHI15 to the MESA evolution
models used here. We estimate an age of 185 Myr and 13 Myr
using the log(g) and T values used by H13 and DHIS,
respectively. These estimates are lower than the estimates made
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Figure 3. Solid lines show how the BHACIS evolution models predict
substellar objects cool over time for masses ranging from 5.2 to 41.9 M;. The
black point shows the effective temperature of x And b (2040 £+ 60 K; H13)
and its age (4773 Myr; this work).

by these two studies by ~20%, which is smaller than the
uncertainties in the age estimates.

4.3. The Mass of v And b

In order to determine the mass of x And b, we compare our
age estimate for the host star and the spectroscopically
determined effective temperature of the companion
(2040 = 60 K; H13) to the predictions of the updated BHAC15
models of Baraffe et al. (2015). Uncertainties in the companion
mass are determined by using this method to calculate the mass
corresponding to the four points representing the 1o uncertain-
ties in the age and effective temperature of the companion.
With this technique, we find a mass of 2275 M; with the
uncertainties dominated by the uncertainty in the age which is
dominated by the uncertainty in the metallicity. Figure 3 shows
the effective temperature of £ And b from H13 and our final
estimate for the age of the system along with the cooling tracks
of the BHAC15 models.

5. SUMMARY

We present new PAVO/CHARA interferometric observa-
tions of Kk And A. Using these observations, the star’s
photometry, and its v sin i, we constrain an oblate star model
from which we calculate various fundamental parameters.

JONES ET AL.

These parameters include the star’s luminosity, radius profile,
and equatorial rotation velocity that are compared to the
predictions of the MESA evolution models in order to estimate
an age and mass for the star. Four internal metallicities
(IM/H] = +0.14, 0.0, —0.14, and —0.28) are tested, and we
find that metal-rich models yield higher-mass and younger-age
more metal-poor models.

Because the internal metallicity of the star is expected to be
solar ([M/H]=0.00+0.14), we adopt the solar metallicity
model with the uncertainties in our final age and mass governed
by the uncertainty in the metallicity. With this model, we
determine an age of 47122“7) Myr for the system and a mass of

2.76870109 M, for  And A. Based on this age, the effective
temperature of the companion, and the BHACI1S evolution
models, we determine a mass of £k And b of 22f§ Mjyyp.
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